Both DNA methylation and post-translational histone modifications contribute to gene silencing, but the mechanistic relationship between these epigenetic marks is unclear. Mutations in two Arabidopsis genes, the KRYPTONITE (KYP) histone H3 lysine 9 (H3K9) methyltransferase and the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase, cause a reduction of CNG DNA methylation, suggesting that H3K9 methylation controls CNG DNA methylation. Here we show that the chromodomain of CMT3 can directly interact with the N-terminal tail of histone H3, but only when it is simultaneously methylated at both the H3K9 and H3K27 positions. Furthermore, using chromatin immunoprecipitation analysis and immunohistolocalization experiments, we found that H3K27 methylation colocalizes with H3K9 methylation at CMT3-controlled loci. The H3K27 methylation present at heterochromatin was not affected by mutations in KYP or in several Arabidopsis PcG related genes including the Enhancer of Zeste homologs, suggesting that a novel pathway controls heterochromatic H3K27 methylation. Our results suggest a model in which H3K9 methylation by KYP, and H3K27 methylation by an unknown enzyme provide a combinatorial histone code for the recruitment of CMT3 to silent loci.
Posttranslational modifications of histones such as methylation, acetylation, and phosphorylation regulate chromatin structure and gene expression. Here we show that protein kinase C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor (AR) target genes. PRK1 is pivotal to AR function since PRK1 knockdown or inhibition impedes AR-dependent transcription. Blocking PRK1 function abrogates androgen-induced H3T11 phosphorylation, and inhibits androgen-induced demethylation of histone H3. Moreover, serine 5-phosphorylated RNA polymerase II is no longer observed at AR target promoters. Phosphorylation of H3T11 by PRK1 accelerates demethylation by the Jumonji C (JmjC) domain-containing protein JMJD2C. Thus, phosphorylation of H3T11 by PRK1 establishes a novel chromatin mark for gene activation, identifying PRK1 as a gatekeeper of ARdependent transcription. Importantly, levels of PRK1 and phosphorylated H3T11 correlate with Gleason scores of prostate carcinomas. Finally, inhibition of PRK1 blocks AR-induced tumour cell proliferation, making PRK1 a promising therapeutic target. Keywords PRK1; androgen receptor; histone phosphorylation; prostate cancerThe N-terminal tails of histones are subject to a plethora of posttranslational modifications such as methylation, acetylation, and phosphorylation by specific chromatin-modifying enzymes1. During gene expression, these modifications influence chromatin structure to facilitate the assembly of the RNA polymerase II transcription machinery1 , 2. Androgen receptor (AR)-dependent gene expression is characterized by changes in chromatin
Summary Haspin phosphorylates histone H3 at Thr-3 (H3T3ph) during mitosis [1, 2], providing a chromatin binding site for the chromosomal passenger complex (CPC) at centromeres to regulate chromosome segregation [3–5]. H3T3ph becomes increasingly focused at inner centromeres during prometaphase [1, 2], but little is known about how its level or location and the consequent chromosomal localization of the CPC are regulated. In addition, CPC binding to Shugoshin proteins contributes to centromeric Aurora B localization [5, 6]. Recruitment of the Shugoshins to centromeres requires the phosphorylation of Histone H2A at T120 (H2AT120ph) by the kinetochore kinase Bub1 [7], but the molecular basis for the collaboration of this pathway with H3T3ph has been unclear. Here, we show that Aurora B phosphorylates Haspin to promote generation of H3T3ph, and that Aurora B kinase activity is required for normal chromosomal localization of the CPC, indicating an intimate linkage between Aurora B and Haspin functions in mitosis. We propose that Aurora B activity triggers a CPC-Haspin-H3T3ph feedback loop that promotes generation of H3T3ph on chromatin. We also provide evidence that the Bub1-Shugoshin-CPC pathway supplies a signal that boosts the CPC-Haspin-H3T3ph feedback loop specifically at centromeres to produce the well-known accumulation of the CPC in these regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.