The frontotemporal dementias (FTDs) are a clinically, genetically, and neuropathologically heterogeneous group of diseases accounting for up to 20% of presenile dementia cases. FTD is characterized by behavioral and/or language dysfunction and may co-occur with motor neuron disease (MND).1,2 Frontotemporal lobar degeneration (FTLD) with ubiquitin-positive, tau-negative inclusions (FTLD-U) is the most common underlying pathology in FTD with and without MND.
Background Disease-modifying therapies for Alzheimer’s disease (AD) would be most beneficial if applied during the ‘preclinical’ stage (pathology present with cognition intact) before significant neuronal loss occurs. Therefore, biomarkers that can detect AD pathology in its early stages and predict dementia onset and progression will be invaluable for patient care and efficient clinical trial design. Methods 2D–difference gel electrophoresis and liquid chromatography tandem mass spectrometry were used to measure AD-associated changes in cerebrospinal fluid (CSF). Concentrations of CSF YKL-40 were further evaluated by enzyme-linked immunosorbent assay in the discovery cohort (N=47), an independent sample set (N=292) with paired plasma samples (N=237), frontotemporal lobar degeneration (N=9), and progressive supranuclear palsy (PSP, N=6). Human AD brain was studied immunohistochemically to identify potential source(s) of YKL-40. Results In the discovery and validation cohorts, mean CSF YKL-40 was higher in very mild and mild AD-type dementia (Clinical Dementia Rating [CDR] 0.5 and 1) vs. controls (CDR 0) and PSP. Importantly, CSF YKL-40/Aβ42 ratio predicted risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) as well as the best CSF biomarkers identified to date, tau/Aβ42 and p-tau181/Aβ42. Mean plasma YKL-40 was higher in CDR 0.5 and 1 vs. CDR 0 groups, and correlated with CSF levels. YKL-40 immunoreactivity was observed within astrocytes near a subset of amyloid plaques, implicating YKL-40 in the neuroinflammatory response to Aβ deposition. Conclusions These data demonstrate that YKL-40, a putative indicator of neuroinflammation, is elevated in AD, and that, together with Aβ42, has potential prognostic utility as a biomarker for preclinical AD.
Objective There is a growing need to identify cerebrospinal fluid (CSF) markers that can detect Alzheimer’s disease (AD) pathology in cognitively normal individuals since it is in this population that disease-modifying therapies may have the greatest chance of success. While AD pathology is estimated to begin ~10–15 years prior to the onset of cognitive decline, substantial neuronal loss is present by the time the earliest signs of cognitive impairment appear. Visinin-like protein −1 (VILIP-1) has demonstrated potential utility as a marker of neuronal injury. We here investigate CSF VILIP-1 and VILIP-1/amyloid-β42 (Aβ42) ratio as diagnostic and prognostic markers in early AD. Methods We assessed CSF levels of VILIP-1, tau, phosphorylated-tau181 (p-tau181), and Aβ42 in cognitively normal controls [CNC] (n=211), individuals with early symptomatic AD (n=98), and individuals with other dementias (n=19). Structural magnetic resonance imaging (n=192) and amyloid imaging with Pittsburgh Compound-B (n=156) were obtained in subsets of this cohort. Among the CNC cohort, 164 individuals had follow-up annual cognitive assessments for 2–3 years. Results CSF VILIP-1 levels differentiated individuals with AD from CNC and individuals with other dementias. CSF VILIP-1 levels correlated with CSF tau, p-tau181, and brain volumes in AD. VILIP-1 and VILIP-1/Aβ42 predicted future cognitive impairment in CNC over the follow-up period. Importantly, CSF VILIP-1/Aβ42 predicted future cognitive impairment at least as well as tau/Aβ42 and p-tau181/Aβ42. Interpretation These findings suggest that CSF VILIP-1 and VILIP-1/Aβ42 offer diagnostic utility for early AD, and can predict future cognitive impairment in cognitively normal individuals similarly to tau and tau/Aβ42, respectively.
Background: To date, there have been no reports of individuals who have been characterized longitudinally using clinical and cognitive measures and who transitioned from cognitive normality to early symptomatic Alzheimer disease (AD) during a period when both cerebrospinal fluid (CSF) markers and Pittsburgh Compound B (PiB) amyloid imaging were obtained.Objective: To determine the temporal relationships of clinical, cognitive, CSF, and PiB amyloid imaging markers of AD.
BackgroundAutopsy series commonly report a high percentage of coincident pathologies in demented patients, including patients with a clinical diagnosis of dementia of the Alzheimer type (DAT). However many clinical and biomarker studies report cases with a single neurodegenerative disease. We examined multimodal biomarker correlates of the consecutive series of the first 22 Alzheimer’s Disease Neuroimaging Initiative autopsies. Clinical data, neuropsychological measures, cerebrospinal fluid Aβ, total and phosphorylated tau and α-synuclein and MRI and FDG-PET scans.ResultsClinical diagnosis was either probable DAT or Alzheimer’s disease (AD)-type mild cognitive impairment (MCI) at last evaluation prior to death. All patients had a pathological diagnosis of AD, but only four had pure AD. A coincident pathological diagnosis of dementia with Lewy bodies (DLB), medial temporal lobe pathology (TDP-43 proteinopathy, argyrophilic grain disease and hippocampal sclerosis), referred to collectively here as MTL, and vascular pathology were present in 45.5%, 40.0% and 22.7% of these patients, respectively. Hallucinations were a strong predictor of coincident DLB (100% specificity) and a more severe dysexecutive profile was also a useful predictor of coincident DLB (80.0% sensitivity and 83.3% specificity). Occipital FDG-PET hypometabolism accurately classified coincident DLB (80% sensitivity and 100% specificity). Subjects with coincident MTL showed lower hippocampal volume.ConclusionsBiomarkers can be used to independently predict coincident AD and DLB pathology, a common finding in amnestic MCI and DAT patients. Cohorts with comprehensive neuropathological assessments and multimodal biomarkers are needed to characterize independent predictors for the different neuropathological substrates of cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.