Black TiO2 attracts enormous attention due to its large solar absorption and induced excellent photocatalytic activity. Herein, a new approach assisted by hydrogen plasma to synthesize unique H‐doped black titania with a core/shell structure (TiO2@TiO2‐xHx) is presented, superior to the high H2‐pressure process (under 20 bar for five days). The black titania possesses the largest solar absorption (≈83%), far more than any other reported black titania (the record (high‐pressure): ≈30%). H doping is favorable to eliminate the recombination centers of light‐induced electrons and holes. High absorption and low recombination ensure the excellent photocatalytic activity for the black titania in the photo‐oxidation of organic molecules in water and the production of hydrogen. The H‐doped amorphous shell is proposed to play the same role as Ag or Pt loading on TiO2 nanocrystals, which induces the localized surface plasma resonance and black coloration. Photocatalytic water splitting and cleaning using TiO2‐xHx is believed to have a bright future for sustainable energy sources and cleaning environment.
Utilizing solar energy for hydrogen generation and water cleaning is a great challenge due to insufficient visible-light power conversion. Here we report a mass production approach to synthesize black titania by aluminium reduction. The obtained sample possesses a unique crystalline core-amorphous shell structure (TiO 2 @TiO 2Àx ). The black titania absorbs $65% of the total solar energy by improving visible and infrared absorption, superior to the recently reported ones ($30%) and pristine TiO 2 ($5%). The unique core-shell structure (TiO 2 @TiO 2Àx ) and high absorption boost the photocatalytic water cleaning and water splitting.The black titania is also an excellent photoelectrochemical electrode exhibiting a high solar-to-hydrogen efficiency (1.7%). A large photothermic effect may enable black titania "capture" solar energy for solar thermal collectors. The Al-reduced amorphous shell is proved to be an excellent candidate to absorb more solar light and receive more efficient photocatalysis.
Modification of rutile titanium dioxide (TiO2) for hydrogen generation and water cleaning is a grand challenge due to the chemical inertness of rutile, while such inertness is a desired merit for its stability in photoelectrochemical applications. Herein, we report an innovative two-step method to prepare a core-shell nanostructured S-doped rutile TiO2 (R'-TiO2-S). This modified black rutile TiO2 sample exhibits remarkably enhanced absorption in visible and near-infrared regions and efficient charge separation and transport. As a result, the unique sulfide surface (TiO(2-x):S) boosts the photocatalytic water cleaning and water splitting with a steady solar hydrogen production rate of 0.258 mmol h(-1) g(-1). The black titania is also an excellent photoelectrochemical electrode exhibiting a high solar-to-hydrogen conversion efficiency of 1.67%. The sulfided surface shell is proved to be an effective strategy for enhancing solar light absorption and photoelectric conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.