Constitutive activation of signal transducer and activator of transcription 3 (STAT3) signaling is frequently detected in cancer, promoting its emergence as a promising target for cancer treatment. Inhibiting constitutive STAT3 signaling represents a potential therapeutic approach. We used structure-based design to develop a nonpeptide, cell-permeable, small molecule, termed as LLL12, which targets STAT3. LLL12 was found to inhibit STAT3 phosphorylation (tyrosine 705) and induce apoptosis as indicated by the increases of cleaved caspase-3 and poly (ADP-ribose) polymerase in various breast, pancreatic, and glioblastoma cancer cell lines expressing elevated levels of STAT3 phosphorylation. LLL12 could also inhibit STAT3 phosphorylation induced by interleukin-6 in MDA-MB-453 breast cancer cells. The inhibition of STAT3 by LLL12 was confirmed by the inhibition of STAT3 DNA binding activity and STAT3-dependent transcriptional luciferase activity. Downstream targets of STAT3, cyclin D1, Bcl-2, and survivin were also downregulated by LLL12 at both protein and messenger RNA levels. LLL12 is a potent inhibitor of cell viability, with half-maximal inhibitory concentrations values ranging between 0.16 and 3.09 microM, which are lower than the reported JAK2 inhibitor WP1066 and STAT3 inhibitor S3I-201 in six cancer cell lines expressing elevated levels of STAT3 phosphorylation. In addition, LLL12 inhibits colony formation and cell migration and works synergistically with doxorubicin and gemcitabine. Furthermore, LLL12 demonstrated a potent inhibitory activity on breast and glioblastoma tumor growth in a mouse xenograft model. Our results indicate that LLL12 may be a potential therapeutic agent for human cancer cells expressing constitutive STAT3 signaling.
N-terminal acetylation is an abundant modification influencing protein functions. Since ≈80% of mammalian cytosolic proteins are N-terminally acetylated, this potentially represents an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions, suggesting it may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation-dependent interaction between an E2 conjugating enzyme (UBE2M, aka UBC12) and DCN1 (aka DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl amide binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress the anchorage-independent growth of a cell line harboring DCN1 amplification. Overall, the data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets, and provide insights into targeting multiprotein E2–E3 ligases.
Interleukin (IL)-6 overexpression and constitutive STAT3 activation occur in many cancers, including prostate cancer. However, their contribution to prostate stem and progenitor cells has not been explored. In this study, we show that stem-like cells from patients with prostate cancer secrete higher levels of IL-6 than their counterparts in non-neoplastic prostate. Tumor grade did not influence the levels of expression or secretion. Stem-like and progenitor cells expressed the IL-6 receptor gp80 with concomitant expression of pSTAT3. Blockade of activated STAT3, by either anti-IL-6 antibody siltuximab (CNTO 328) or LLL12, a specific pSTAT3 inhibitor, suppressed the clonogenicity of the stem-like cells in patients with high-grade disease. In a murine xenograft model used to determine the in vivo effects of pSTAT3 suppression, LLL12 treatment effectively abolished outgrowth of a patient-derived castrate-resistant tumor. Our results indicate that the most primitive cells in prostate cancer require pSTAT3 for survival, rationalizing STAT3 as a therapeutic target to treat advanced prostate cancer. Cancer Res; 73(16); 5288-98. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.