Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and dynamics in a wide range of tissues and organisms. Standard experimental protocols and analysis workflows have been developed to create single-cell transcriptomic maps from tissues. This Tutorial focuses on how to interpret these data to identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells. We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding principles and specific recommendations for software tools and resources that can be used for each step are covered and an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed and basic knowledge of programming (e.g. in the R language) is recommended.
Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and dynamics in a wide variety of tissues and organisms. Standard experimental protocols and analysis workflows have been developed to create single-cell transcriptomic maps from tissues. This tutorial focuses on how to interpret these data to identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells. We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding principles and specific recommendations for software tools and resources that can be used for each step are covered, and an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed, and basic knowledge of programming (e.g., in the R language) is recommended.
Knowledge of the transcriptional programs underpinning the functions of human kidney cell populations at homeostasis is limited. We present a single-cell perspective of healthy human kidney from 19 living donors, with equal contribution from males and females, profiling the transcriptome of 27677 cells to map human kidney at high resolution. Sex-based differences in gene expression within proximal tubular cells were observed, specifically, increased anti-oxidant metallothionein genes in females and aerobic metabolism-related genes in males. Functional differences in metabolism were confirmed in proximal tubular cells, with male cells exhibiting higher oxidative phosphorylation and higher levels of energy precursor metabolites. We identified kidney-specific lymphocyte populations with unique transcriptional profiles indicative of kidney-adapted functions. Significant heterogeneity in myeloid cells was observed, with a MRC1+LYVE1+FOLR2+C1QC+ population representing a predominant population in healthy kidney. This study provides a detailed cellular map of healthy human kidney, and explores the complexity of parenchymal and kidney-resident immune cells.
Maintaining organ homeostasis requires complex functional synergy between distinct cell types, a snapshot of which is glimpsed through the simultaneously broad and granular analysis provided by single-cell atlases. Knowledge of the transcriptional programs underpinning the complex and specialized functions of human kidney cell populations at homeostasis is limited by difficulty accessing healthy, fresh tissue. Here, we present a single-cell perspective of healthy human kidney from 19 living donors, with equal contribution from males and females, profiling the transcriptome of 27677 high-quality cells to map healthy kidney at high resolution. Our sex-balanced dataset revealed sex-based differences in gene expression within proximal tubular cells, specifically, increased anti-oxidant metallothionein genes in females and the predominance of aerobic metabolism-related genes in males. Functional differences in metabolism were confirmed between male and female proximal tubular cells, with male cells exhibiting higher oxidative phosphorylation and higher levels of energy precursor metabolites. Within the immune niche, we identified kidney-specific lymphocyte populations with unique transcriptional profiles indicative of kidney-adapted functions and validated findings by flow cytometry. We observed significant heterogeneity in resident myeloid populations and identified an MRC1+ LYVE1+ FOLR2+ C1QC+ population as the predominant myeloid population in healthy kidney. This study provides a detailed cellular map of healthy human kidney, revealing novel insights into the complexity of renal parenchymal cells and kidney-resident immune populations.
Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes 1,2. However, the mechanisms that govern their sorting and secretion are still not well understood. In this study, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequence. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis, and confirmed that primary RNA sequence is a major determinant in small RNA secretion. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins, e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. We used exoCLIP to reveal the RNA interactome of HNRNPA2B1 and RBM24 in extracellular vesicles. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into complex processes such as small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.