Context Secondary analyses of two randomized controlled trials (RCTs) and supportive epidemiologic and preclinical indicated the potential of selenium and vitamin E for preventing prostate cancer. Objective To determine whether selenium or vitamin E or both could prevent prostate cancer with little or no toxicity in relatively healthy men. Design, Setting, and Participants Randomization of a planned 32,400 men to selenium, vitamin E, selenium plus vitamin E, and placebo in a double-blinded fashion. Participants were recruited and followed in community practices, local hospitals and HMOs, and tertiary cancer centers in the United States, Canada and Puerto Rico. Baseline eligibility included 50 years or older (African American) or 55 years or older (all others), a serum prostate-specific antigen (PSA) ≤ 4 ng/mL, and a digital rectal examination (DRE) not suspicious for prostate cancer. Between 2001 and 2004, 35,533 men (10% more than planned because of a faster-than-expected accrual rate) were randomly assigned to the four study arms, which were well balanced with respect to all potentially important risk factors. Interventions Oral selenium (200 µg/day from L-selenomethionine) and matched vitamin E placebo, vitamin E (400 IU/day of all rac-α-tocopheryl acetate) and matched selenium placebo, or the two combined or placebo plus placebo for a planned minimum of 7 and maximum of 12 years. Main Outcome Measures Prostate cancer (as determined by routine community diagnostic standards) and prespecified secondary outcomes including lung, colorectal and overall cancer. Results Study supplements were discontinued at the recommendation of the Data and Safety Monitoring Committee at a planned 7-year interim analysis because the evidence convincingly demonstrated no benefit from either study agent (p < 0.0001) and no possibility of a benefit to the planned degree with additional follow-up. As of October 23, 2008, median overall follow-up was 5.46 years (range, 4.17 and 7.33). Hazard ratios (number of prostate cancers, 99% confidence intervals [CIs]) for prostate cancer were 1.13 for vitamin E (n=473; CI, 0.91–1.41), 1.04 for selenium (n=432; CI, 0.83–1.30), and 1.05 for the combination (n=437; CI, 0.83–1.31) compared with placebo (n=416). There were no significant differences (all p-values > 0.15) in any prespecified cancer endpoints. There were nonsignificant increased risks of prostate cancer in the vitamin E arm (p=0.06; relative risk [RR]=1.13; 99% CI, 0l95–1.35) and of Type 2 diabetes mellitus in the selenium arm (p=0.16; RR=1.07; 99% CI, 0.94–1.22), but they were not observed in the combination arm. Conclusion Selenium or vitamin E, alone or in combination, did not prevent prostate cancer in this population at the doses and formulations used.
Recently, common variants on human chromosome 8q24 were found to be associated with prostate cancer risk. While conducting a genome-wide association study in the Cancer Genetic Markers of Susceptibility project with 550,000 SNPs in a nested case-control study (1,172 cases and 1,157 controls of European origin), we identified a new association at 8q24 with an independent effect on prostate cancer susceptibility. The most significant signal is 70 kb centromeric to the previously reported SNP, rs1447295, but shows little evidence of linkage disequilibrium with it. A combined analysis with four additional studies (total: 4,296 cases and 4,299 controls) confirms association with prostate cancer for rs6983267 in the centromeric locus (P = 9.42 x 10(-13); heterozygote odds ratio (OR): 1.26, 95% confidence interval (c.i.): 1.13-1.41; homozygote OR: 1.58, 95% c.i.: 1.40-1.78). Each SNP remained significant in a joint analysis after adjusting for the other (rs1447295 P = 1.41 x 10(-11); rs6983267 P = 6.62 x 10(-10)). These observations, combined with compelling evidence for a recombination hotspot between the two markers, indicate the presence of at least two independent loci within 8q24 that contribute to prostate cancer in men of European ancestry. We estimate that the population attributable risk of the new locus, marked by rs6983267, is higher than the locus marked by rs1447295 (21% versus 9%).
The primary circulating form of vitamin D, 25-hydroxy-vitamin D [25(OH)D], is associated with multiple medical outcomes, including rickets, osteoporosis, multiple sclerosis and cancer. In a genome-wide association study (GWAS) of 4501 persons of European ancestry drawn from five cohorts, we identified single-nucleotide polymorphisms (SNPs) in the gene encoding group-specific component (vitamin D binding) protein, GC, on chromosome 4q12-13 that were associated with 25(OH)D concentrations: rs2282679 (P = 2.0 × 10−30), in linkage disequilibrium (LD) with rs7041, a non-synonymous SNP (D432E; P = 4.1 × 10−22) and rs1155563 (P = 3.8 × 10−25). Suggestive signals for association with 25(OH)D were also observed for SNPs in or near three other genes involved in vitamin D synthesis or activation: rs3829251 on chromosome 11q13.4 in NADSYN1 [encoding nicotinamide adenine dinucleotide (NAD) synthetase; P = 8.8 × 10−7], which was in high LD with rs1790349, located in DHCR7, the gene encoding 7-dehydrocholesterol reductase that synthesizes cholesterol from 7-dehydrocholesterol; rs6599638 in the region harboring the open-reading frame 88 (C10orf88) on chromosome 10q26.13 in the vicinity of ACADSB (acyl-Coenzyme A dehydrogenase), involved in cholesterol and vitamin D synthesis (P = 3.3 × 10−7); and rs2060793 on chromosome 11p15.2 in CYP2R1 (cytochrome P450, family 2, subfamily R, polypeptide 1, encoding a key C-25 hydroxylase that converts vitamin D3 to an active vitamin D receptor ligand; P = 1.4 × 10−5). We genotyped SNPs in these four regions in 2221 additional samples and confirmed strong genome-wide significant associations with 25(OH)D through meta-analysis with the GWAS data for GC (P = 1.8 × 10−49), NADSYN1/DHCR7 (P = 3.4 × 10−9) and CYP2R1 (P = 2.9 × 10−17), but not C10orf88 (P = 2.4 × 10−5).
We followed our initial genome-wide association study (GWAS) of 527,869 SNPs on 1,172 individuals with prostate cancer and 1,157 controls of European origin-nested in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial prospective study-by testing 26,958 SNPs in four independent studies (total of 3,941 cases and 3,964 controls). In the combined joint analysis, we confirmed three previously reported loci (two independent SNPs at 8q24 and one in HNF1B (formerly known as TCF2 on 17q); P < 10(-10)). In addition, loci on chromosomes 7, 10 (two loci) and 11 were highly significant (between P < 7.31 x 10(-13) and P < 2.14 x 10(-6)). Loci on chromosome 10 include MSMB, which encodes beta-microseminoprotein, a primary constituent of semen and a proposed prostate cancer biomarker, and CTBP2, a gene with antiapoptotic activity; the locus on chromosome 7 is at JAZF1, a transcriptional repressor that is fused by chromosome translocation to SUZ12 in endometrial cancer. Of the nine loci that showed highly suggestive associations (P < 2.5 x 10(-5)), four best fit a recessive model and included candidate susceptibility genes: CPNE3, IL16 and CDH13. Our findings point to multiple loci with moderate effects associated with susceptibility to prostate cancer that, taken together, in the future may predict high risk in select individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.