Three pyrazolone-based ligands, namely 1-phenyl-3-methyl-4-(1-naphthoyl)-5-pyrazolone (HL1), 1-phenyl-3-methyl-4-(4-dimethylaminobenzoyl)-5-pyrazolone (HL2), and 1-phenyl-3-methyl-4-(4-cyanobenzoyl)-5-pyrazolone (HL3), were synthesized by introducing electron-poor or electron-rich aryl substituents at the 4-position of the pyrazolone ring. Their corresponding europium complexes Eu(LX)3(H2O)2 and Eu(LX)3(TPPO)(H2O) (X = 1-3) were characterized by photophysical studies. The characteristic Eu(III) emission of these complexes with at most 9.2 x 10(-3) of fluorescent quantum yield was observed at room temperature. The results show that the modification of ligands tunes the triplet energy levels of three pyrazolone-based ligands to match the 5D0 energy level of Eu3+ properly and improves the energy transfer efficiency from antenna to Eu3+, therefore enhancing the Eu(III) emission intensity. The highest energy transfer efficiency and probability of lanthanide emission of Eu(L1)3(H2O)2 are 35.1% and 2.6%, respectively, which opens up broad prospects for improving luminescent properties of Eu(III) complexes by the modification of ligands. Furthermore, the electroluminescent properties of Eu(L1)3(TPPO)(H2O) were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.