Gene expression grade index appeared to reclassify patients with histologic grade 2 tumors into two groups with high versus low risks of recurrence. This approach may improve the accuracy of tumor grading and thus its prognostic value.
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Purpose: Recently, several prognostic gene expression signatures have been identified; however, their performance has never been evaluated according to the previously described molecular subtypes based on the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), and their biological meaning has remained unclear. Here we aimed to perform a comprehensive meta-analysis integrating both clinicopathologic and gene expression data, focusing on the main molecular subtypes. Experimental Design: We developed gene expression modules related to key biological processes in breast cancer such as tumor invasion, immune response, angiogenesis, apoptosis, proliferation, and ER and HER2 signaling, and then analyzed these modules together with clinical variables and several prognostic signatures on publicly available microarray studies (>2,100 patients).Results: Multivariate analysis showed that in the ER+/HER2-subgroup, only the proliferation module and the histologic grade were significantly associated with clinical outcome. In the ER-/HER2-subgroup, only the immune response module was associated with prognosis, whereas in the HER2+ tumors, the tumor invasion and immune response modules displayed significant association with survival. Proliferation was identified as the most important component of several prognostic signatures, and their performance was limited to the ER+/HER2-subgroup. Conclusions: Although proliferation is the strongest parameter predicting clinical outcome in the ER+/HER2-subtype and the common denominator of most prognostic gene signatures, immune response and tumor invasion seem to be the main molecular processes associated with prognosis in the ER-/HER2-and HER2+ subgroups, respectively. These findings may help to define new clinicogenomic models and to identify new therapeutic strategies in the specific molecular subgroups.
Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient’s tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole genome and targeted sequencing to multiple samples from each of 50 patients’ tumors (total 303). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13/50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resisting chemotherapy and acquiring invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.