SummaryIn Bacillus subtilis, the transcription factor PerR is an iron dependant sensor of H2O2. The sensing mechanism relies on a selective metal catalysed oxidation of two histidine residues of the regulatory site. Here we present the first crystal structure of the active PerR protein in complex with a Mn 2+ ion. In addition, X-ray absorption spectroscopy experiments were performed to characterize the corresponding iron form of the protein. Both studies reveal a penta-coordinate arrangement of the regulatory site that involves three histidines and two aspartates. One of the histidine ligand belongs to the N-terminal domain. Binding of this residue to the regulatory metal allows the protein to adopt a caliper-like conformation suited to DNA binding. Since this histidine is conserved in all PerR and a vast majority of Fur proteins, it is likely that the allosteric switch induced by the regulatory metal is general for this family of metalloregulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.