Amyotrophic lateral sclerosis (ALS) is increasingly recognized to be a multisystem disorder which includes both clinical and neuropathological features of a frontotemporal lobar degeneration (FTLD). In order to provide a common framework within which to discuss the characteristics of the cognitive and behavioural syndromes of ALS, and with which to conduct clinical and neuropathological research, an international research workshop on frontotemporal dementia (FTD) and ALS was held in London, Canada in June 2007. The recommendations arising from this research workshop address the requirement for a concise clinical diagnosis of the underlying motor neuron disease (Axis I), defining the cognitive and behavioural dysfunction (Axis II), describing additional non-motor manifestations (Axis III) and identifying the presence of disease modifiers (Axis IV).
Amyotrophic lateral sclerosis 2 (ALS2) is an autosomal recessive form of juvenile ALS and has been mapped to human chromosome 2q33. Here we report the identification of two independent deletion mutations linked to ALS2 in the coding exons of the new gene ALS2. These deletion mutations result in frameshifts that generate premature stop codons. ALS2 is expressed in various tissues and cells, including neurons throughout the brain and spinal cord, and encodes a protein containing multiple domains that have homology to RanGEF as well as RhoGEF. Deletion mutations are predicted to cause a loss of protein function, providing strong evidence that ALS2 is the causative gene underlying this form of ALS.
Mutations of the lipid phosphatase FIG4 that regulates PI(3,5)P(2) are responsible for the recessive peripheral-nerve disorder CMT4J. We now describe nonsynonymous variants of FIG4 in 2% (9/473) of patients with amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). Heterozygosity for a deleterious allele of FIG4 appears to be a risk factor for ALS and PLS, extending the list of known ALS genes and increasing the clinical spectrum of FIG4-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.