Aluminum (Al), a neurotoxic agent, has been associated with Alzheimer's disease (AD), which is characterized by cholinergic dysfunction in the central nervous system. In this study, we evaluated the effect of long-term exposure to aluminum on acetylcholinesterase (AChE) activity in the central nervous system in different brain regions, in synaptosomes of the cerebral cortex and in erythrocytes. The animals were loaded by gavage with AlCl(3) 50 mg/kg/day, 5 days per week, totalizing 60 administrations. Rats were divided into four groups: (1) control (C); (2) 50 mg/kg of citrate solution (Ci); (3) 50 mg/kg of Al plus citrate (Al + Ci), and (4) 50 mg/kg of Al (Al). AChE activity in striatum was increased by 15% for Ci, 19% for Al + Ci and 30% for Al, when compared to control (P < 0.05). The activity in hypothalamus increased 23% for Ci, 26% for Al + Ci and 28% for Al, when compared to control (P < 0.05). AChE activity in cerebellum, hippocampus and cerebral cortex was decreased by 11%, 23% and 21% respectively, for Al, when compared to the respective controls (P < 0.05). AChE activity in synaptosomes was increased by 14% for Al, when compared to control (P < 0.05). Erythrocyte AChE activity was increased by 17% for Al + Ci and 11% for Al, when compared to control (P < 0.05). These results indicate that Al affects at the same way AChE activity in the central nervous system and erythrocyte. AChE activity in erythrocytes may be considered a marker of easy access of the central cholinergic status.
It is well established that the involvement of reactive species in the pathophysiology of several neurological diseases, including phenylketonuria (PKU), a metabolic genetic disorder biochemically characterized by elevated levels of phenylalanine (Phe). In previous studies, we verified that PKU patients (treated with a protein-restricted diet supplemented with a special formula not containing L-carnitine and selenium) presented high lipid and protein oxidative damage as well as a reduction of antioxidants when compared to the healthy individuals. Our goal in the present study was to evaluate the effect of Phe-restricted diet supplemented with L-carnitine and selenium, two well-known antioxidant compounds, on oxidative damage in PKU patients. We investigated various oxidative stress parameters in blood of 18 treated PKU patients before and after 6 months of supplementation with a special formula containing L-carnitine and selenium. It was verified that treatment with L-carnitine and selenium was capable of reverting the lipid peroxidation, measured by thiobarbituric acid-reactive species, and the protein oxidative damage, measured by sulfhydryl oxidation, to the levels of controls. Additionally, the reduced activity of glutathione peroxidase was normalized by the antioxidant supplementation. It was also verified a significant inverse correlation between lipid peroxidation and L-carnitine blood levels as well as a significant positive correlation between glutathione peroxidase activity and blood selenium concentration. In conclusion, our results suggest that supplementation of L-carnitine and selenium is important for PKU patients since it could help to correct the oxidative stress process which possibly contributes, at least in part, to the neurological symptoms found in phenylketonuric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.