Hereditary haemochromatosis (HH), which affects some 1 in 400 and has an estimated carrier frequency of 1 in 10 individuals of Northern European descent, results in multi-organ dysfunction caused by increased iron deposition, and is treatable if detected early. Using linkage-disequilibrium and full haplotype analysis, we have identified a 250-kilobase region more than 3 megabases telomeric of the major histocompatibility complex (MHC) that is identical-by-descent in 85% of patient chromosomes. Within this region, we have identified a gene related to the MHC class I family, termed HLA-H, containing two missense alterations. One of these is predicted to inactivate this class of proteins and was found homozygous in 83% of 178 patients. A role of this gene in haemochromatosis is supported by the frequency and nature of the major mutation and prior studies implicating MHC class I-like proteins in iron metabolism.
Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis . A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types . We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correlate with differences in bitterness recognition of phenylthiocarbamide (PTC) . Here, we map individual psychogenomic pathways for bitter taste by testing people with a variety of psychophysical tasks and linking their individual perceptions of the compounds PTC and propylthiouracil (PROP) to the in vitro responses of their TAS2R38 receptor variants. Functional expression studies demonstrate that five different haplotypes from the hTAS2R38 gene code for operatively distinct receptors. The responses of the three haplotypes we also tested in vivo correlate strongly with individuals' psychophysical bitter sensitivities to a family of compounds. These data provide a direct molecular link between heritable variability in bitter taste perception to functional variations of a single G protein coupled receptor that responds to compounds such as PTC and PROP that contain the N-C=S moiety. The molecular mechanisms of perceived bitterness variability have therapeutic implications, such as helping patients to consume beneficial bitter-tasting compounds-for example, pharmaceuticals and selected phytochemicals.
The ability to taste the substance phenylthiocarbamide (PTC) has been widely used for genetic and anthropological studies, but genetic studies have produced conflicting results and demonstrated complex inheritance for this trait. We have identified a small region on chromosome 7q that shows strong linkage disequilibrium between single-nucleotide polymorphism (SNP) markers and PTC taste sensitivity in unrelated subjects. This region contains a single gene that encodes a member of the TAS2R bitter taste receptor family. We identified three coding SNPs giving rise to five haplotypes in this gene worldwide. These haplotypes completely explain the bimodal distribution of PTC taste sensitivity, thus accounting for the inheritance of the classically defined taste insensitivity and for 55 to 85% of the variance in PTC sensitivity. Distinct phenotypes were associated with specific haplotypes, which demonstrates that this gene has a direct influence on PTC taste sensitivity and that sequence variants at different sites interact with each other within the encoded gene product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.