Interleukin-1β (IL-1β)–mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1β production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1β expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1β (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti–PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti–PD-1 therapy.
BackgroundActivation of the NLRP3 inflammasome in gout amplifies the inflammatory response and mediates further damage. In the current study, we assessed the therapeutic effect of OLT1177, an orally active NLRP3 inflammasome inhibitor that is safe in humans, in murine acute arthritis models.MethodsZymosan or monosodium urate (MSU) crystals were injected intra-articularly (i.a.) into mouse knee joints to induce reactive or gouty arthritis. Joint swelling, articular cell infiltration, and synovial cytokines were evaluated 25 hours and 4 hours following zymosan or MSU challenge, respectively. OLT1177 was administrated intraperitoneally by oral gavage or in the food by an OLT1177-enriched diet.ResultsOLT1177 reduced zymosan-induced joint swelling (p < 0.001), cell influx (p < 0.01), and synovial levels of interleukin (IL)-1β, IL-6, and chemokine (C-X-C motif) ligand 1 (CXCL1) (p < 0.05), respectively, when compared with vehicle-treated mice. Plasma OLT1177 levels correlated (p < 0.001) dose-dependently with reduction in joint inflammation. Treatment of mice with OLT1177 limited MSU crystal articular inflammation (p > 0.0001), which was associated with decreased synovial IL-1β, IL-6, myeloperoxidase, and CXCL1 levels (p < 0.01) compared with vehicle-treated mice. When administrated orally 1 hour after MSU challenge, OLT1177 reduced joint inflammation, processing of IL-1β, and synovial phosphorylated c-Jun N-terminal kinase compared with the vehicle group. Mice were fed an OLT1177-enriched diet for 3 weeks and then challenged i.a. with MSU crystals. Joint swelling, synovial IL-1β, and expression of Nlrp3 and Il1b were significantly reduced in synovial tissues in mice fed an OLT1177-enriched diet when compared with the standard diet group.ConclusionsOral OLT1177 is highly effective in ameliorating reactive as well as gouty arthritis.Electronic supplementary materialThe online version of this article (10.1186/s13075-018-1664-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.