Viral infection is a serious threat to both normal population and clinical patients. STAT1 plays central roles in host defense against viral infection. How STAT1 protein maintains stable in different conditions remains largely unknown. Here, we identified BRCC36 as a potent regulator of STAT1 protein stability. Mechanistically, BRCC36 maintains STAT1 levels by utilizing USP13 to form a balanced complex for antagonizing Smurf1‐mediated degradation. Importantly, cellular BRCC36 deficiency results in rapid downregulation of STAT1 during viral infection, whereas a supplement of BRCC36 maintains STAT1 protein levels and host antiviral immunity in vivo. Moreover, we revealed that BRCC36 expression was downregulated in allogeneic HSC transplantation (allo‐HSCT) mice that showed increased susceptibility to viral infection. Supplementing BRCC36 enhanced antiviral response of allo‐HSCT mice by maintaining STAT1 stability. This study uncovers a critical role of BRCC36 in STAT1 protein stability and could provide potential strategies for enhancing clinical antiviral therapy.
Rituximab is used to eliminate B cells as a chimeric monoclonal antibody directed against CD20, a B-cell antigen expressed on B cells. To explore the impact of rituximab administered before transplantation, we implemented a retrospective, monocentric study and utilized real-world data collected at our center between January 2018 and December 2020, and then followed until December 2021. Based on whether a dose of 375mg/m2 rituximab was used at least once within two weeks before transplantation, patients undergoing allo-HSCT were classified into two groups: rituximab (N=176) and non-rituximab (N=344) group. Amongst all the patients, the application of rituximab decreased EBV reactivation (P<0.01) and rituximab was an independent factor in the prevention of EBV reactivation by both univariate and multivariate analyses (HR 0.56, 95%CI 0.33-0.97, P=0.04). In AML patients, there were significant differences in the cumulative incidence of aGVHD between the two groups (P=0.04). Our data showed that rituximab was association with a decreased incidence of aGVHD in AML patients according to both univariate and multivariate analyses. There was no difference between the two groups in other sets of populations. Thus, our study indicated that rituximab administered before transplantation may help prevent EBV reactivation in all allo-HSCT patients, as well as prevent aGVHD in AML patients after allo-HSCT.
Background T cells expressing a chimeric antigen receptor (CAR) engineered to target CD19 can treat leukemia effectively but also increase the risk of complications such as cytokine release syndrome (CRS) and CAR T cell related encephalopathy (CRES) driven by interleukin-6 (IL-6). Here, we investigated whether IL-6 knockdown in CART-19 cells can reduce IL-6 secretion from monocytes, which may reduce the risk of adverse events. Methods Supernatants from cocultures of regular CART-19 cells and B lymphoma cells were added to monocytes in vitro, and the IL-6 levels in monocyte supernatants were measured 24 h later. IL-6 expression was knocked down in regular CART-19 cells by adding a short hairpin RNA (shRNA) (termed ssCART-19) expression cassette specific for IL-6 to the conventional CAR vector. Transduction efficiency and cell proliferation were measured by flow cytometry, and cytotoxicity was measured by evaluating the release of lactate dehydrogenase into the medium. Gene expression was assessed by qRT-PCR and RNA sequencing. A xenograft leukemia mouse model was established by injecting NOD/SCID/γc-/- mice with luciferase-expressing B lymphoma cells, and then the animals were treated with regular CART-19 cells or ssCART-19. Tumor growth was assessed by bioluminescence imaging. Results Both recombinant IL-6 and activated regular CART-19 cells expressing IL-6 triggered IL-6 release by monocytes. IL-6 knockdown in ssCART-19 cells dramatically reduced IL-6 release from monocytes without reducing cytotoxic activity. Mice treated with ssCART-19 cells showed lower IL-6 levels in the serum than mice treated with regular CART-19 cells, but tumor growth and survival were similar between the animal groups. Conclusion IL-6 released from activated CAR T cells may be one of the main initiators of the release of IL-6 from monocytes that can drive CRS. IL-6 knockdown in ssCART-19 cells reduces monocyte release of IL-6 both in vitro and in vivo without affecting antitumor efficacy. The IL-6 knockdown strategy may provide a useful and promising way to improve the safety of CAR T cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.