SUMMARY
The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines.
Human embryonic (ESC) and induced pluripotent stem cells (iPSC) present exciting opportunities for studying development and in vitro disease modeling. However, reported variability in iPSC behavior has called their utility into question. We therefore constituted a test set of 16 iPSCs lines from 7 individuals of varying gender and health status, characterized them extensively for pluripotency, and evaluated their ability to terminally differentiate. Using standardized procedures in two independent laboratories, 13 of the iPSC lines gave rise to functional motor neurons with a range of efficiencies similar to ESCs. Although three iPSC lines were resistant to neural differentiation, early neuralization rescued their performance. Therefore, all lines in the test set passed a stringent test of differentiation capacity despite variations in expression of early pluripotency markers, transgenes and karyotype. This novel iPSC/ESC test set is a robust resource for those interested in the basic biology of stem cells and their applications.
Summary
Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered sub-cellular transport as well as activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates at least a subset of these changes are more broadly conserved in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.