BackgroundWe present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development.ResultsThe genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements.ConclusionsAnalyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
Epidemiological studies have shown that genetic factors contribute to the etiology of the common and serious pregnancy-specific disorder pre-eclampsia (PE)/eclampsia (E). Candidate-gene studies have provided evidence (albeit controversial) of linkage to several genes, including angiotensinogen on 1q42-43 and eNOS on 7q36. A recent medium-density genome scan in Icelandic families identified significant linkage to D2S286 (at 94.05 cM) on chromosome 2p12 and suggestive linkage to D2S321 (at 157.5 cM) on chromosome 2q23. In the present article, the authors report the results of a medium-density genome scan in 34 families, representing 121 affected women, from Australia and New Zealand. Multipoint nonparametric linkage analysis, using the GENEHUNTER-PLUS program, showed suggestive evidence of linkage to chromosome 2 (LOD=2.58), at 144.7 cM, between D2S112 and D2S151, and to chromosome 11q23-24, between D11S925 and D11S4151 (LOD=2.02 at 121.3 cM). Given the limited precision of estimates of the map location of disease-predisposing loci for complex traits, the present finding on chromosome 2 is consistent with the finding from the Icelandic study, and it may represent evidence of the same locus segregating in the population from Australia and New Zealand. The authors propose that the PE/E-linked locus on chromosome 2p should be designated the "PREG1" (pre-eclampsia, eclampsia gene 1) locus.
In mammals, testis determination is under the control of the testis-determining factor borne by the Y chromosome. SRY, a gene cloned from the sex-determining region of the human Y chromosome, has been equated with the testis-determining factor in man and mouse. We have used a human SRY probe to identify and clone related genes from the Y chromosome of two marsupial species. Comparisons of eutherian and metatherian Y-located SRY sequences suggest rapid evolution of these genes, especially outside the region encoding the DNA-binding HMG box. The SRY homologues, together with the mouse Ube1y homologues, are the first genes to be identified on the marsupial Y chromosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.