Intraspecific variability in social organization is common, yet the underlying causes are rarely known [1][2][3] . In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene [4][5][6][7][8] . Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.The fire ant S. invicta is characterized by a remarkable form of social polymorphism under the control of a single Mendelian factor [4][5][6]8 . Remarkably, a genomic element marked by the gene Gp-9 determines whether workers tolerate a single fertile queen (monogyne social form) or several fertile queens (polygyne social form) in their colony. Colonies containing only homozygous Gp-9BB workers accept only a single Gp-9BB queen, whereas colonies containing both Gp-9BB and Gp-9Bb workers will invariably accept several queens, but only Gp-9Bb queens 7,8 . The monogyne and polygyne social forms differ in numerous important aspects of their biology, including the level of aggression between colonies and how new colonies are initiated 9 . These important behavioural differences are associated with a suite of morphological and life-history differences among individuals with alternative Gp-9 genotypes, including queen fecundity, their tendency to accumulate fat during sexual maturation, the odour of mature queens, the number of sperm produced by males, and the size of workers [4][5][6][7][10][11][12] . The fact that Gp-9 codes for an odorant-binding protein (OBP), coupled with evidence that selection acted to drive the molecular diverg...
Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen-and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.social insect | caste differences | nonmodel organism | de novo genome assembly
The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.
Overall response rates among phase 1 oncology trials are higher than previously reported, although they have not changed for classic phase 1 trials, and toxicity-related death rates have remained stable. Rates of response and toxicity vary, however, among the various types of phase 1 oncology trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.