Context. Pulsar radio emission undergoes dispersion due to the presence of free electrons in the interstellar medium (ISM). The dispersive delay in the arrival time of the pulsar signal changes over time due to the varying ISM electron column density along the line of sight. Accurately correcting for this delay is crucial for the detection of nanohertz gravitational waves using pulsar timing arrays. Aims. We aim to demonstrate the precision in the measurement of the dispersion delay achieved by combining 400−500 MHz (BAND3) wide-band data with those at 1360−1460 MHz (BAND5) observed using the upgraded GMRT, employing two different template alignment methods. Methods. To estimate the high precision dispersion measure (DM), we measure high precision times-of-arrival (ToAs) of pulses using carefully generated templates and the currently available pulsar timing techniques. We use two different methods for aligning the templates across frequency to obtain ToAs over multiple sub-bands and therefrom measure the DMs. We study the effects of these two different methods on the measured DM values in detail. Results. We present in-band and inter-band DM estimates of four pulsars over the timescale of a year using two different template alignment methods. The DMs obtained using both these methods show only subtle differences for PSRs J1713+0747 and J1909−3744. A considerable offset is seen in the DM of PSRs J1939+2134 and J2145−0750 between the two methods. This could be due to the presence of scattering in the former and profile evolution in the latter. We find that both methods are useful but could have a systematic offset between the DMs obtained. Irrespective of the template alignment methods followed, the precision on the DMs obtained is about 10−3 pc cm−3 using only BAND3 and 10−4 pc cm−3 after combining data from BAND3 and BAND5 of the uGMRT. In a particular result, we detected a DM excess of about 5 × 10−3 pc cm−3 on 24 February 2019 for PSR J2145−0750. This excess appears to be due to the interaction region created by fast solar wind from a coronal hole and a coronal mass ejection observed from the Sun on that epoch. A detailed analysis of this interesting event is presented.
High-precision measurements of the pulsar dispersion measure (DM) are possible using telescopes with low-frequency wideband receivers. We present an initial study of the application of the wideband timing technique, which can simultaneously measure the pulsar times of arrival (ToAs) and DMs, for a set of five pulsars observed with the upgraded Giant Metrewave Radio Telescope (uGMRT) as part of the Indian Pulsar Timing Array (InPTA) campaign. We have used the observations with the 300 – 500 MHz band of the uGMRT for this purpose. We obtain high precision in DM measurements with precisions of the order 10−6 cm−3 pc. The ToAs obtained have sub-μs precision and the root-mean-square of the post-fit ToA residuals are in the sub-μs range. We find that the uncertainties in the DMs and ToAs obtained with this wideband technique, applied to low-frequency data, are consistent with the results obtained with traditional pulsar timing techniques and comparable to high-frequency results from other PTAs. This work opens up an interesting possibility of using low-frequency wideband observations for precision pulsar timing and gravitational wave detection with similar precision as high-frequency observations used conventionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.