Circulating tumor cells (CTCs) seed cancer metastases; however, the underlying cellular and molecular mechanisms remain unclear. CTC clusters were less frequently detected but more metastatic than single CTCs of triple negative breast cancer patients and representative patient-derived-xenograft (PDX) models. Using intravital multiphoton microscopic imaging, we found that clustered tumor cells in migration and circulation resulted from aggregation of individual tumor cells rather than collective migration and cohesive shedding. Aggregated tumor cells exhibited enriched expression of the breast cancer stem cell marker CD44 and promoted tumorigenesis and polyclonal metastasis. Depletion of CD44 effectively prevented tumor cell aggregation and decreased PAK2 levels. The intercellular CD44-CD44 homophilic interactions directed multicellular aggregation, requiring its N-terminal domain, and initiated CD44-PAK2 interactions for further activation of FAK signaling. Our studies highlight that CD44+ CTC clusters, whose presence is correlated with a poor prognosis of breast cancer patients, can serve as novel therapeutic targets of polyclonal metastasis.
Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC.
Large numbers of cells are generally required for quantitative global proteome profiling due to surface adsorption losses associated with sample processing. Such bulk measurement obscures important cell-to-cell variability (cell heterogeneity) and makes proteomic profiling impossible for rare cell populations (e.g., circulating tumor cells (CTCs)). Here we report a surfactant-assisted one-pot sample preparation coupled with mass spectrometry (MS) method termed SOP-MS for label-free global single-cell proteomics. SOP-MS capitalizes on the combination of a MS-compatible nonionic surfactant, n-Dodecyl-β-D-maltoside, and hydrophobic surface-based low-bind tubes or multi-well plates for ‘all-in-one’ one-pot sample preparation. This ‘all-in-one’ method including elimination of all sample transfer steps maximally reduces surface adsorption losses for effective processing of single cells, thus improving detection sensitivity for single-cell proteomics. This method allows convenient label-free quantification of hundreds of proteins from single human cells and ~1200 proteins from small tissue sections (close to ~20 cells). When applied to a patient CTC-derived xenograft (PCDX) model at the single-cell resolution, SOP-MS can reveal distinct protein signatures between primary tumor cells and early metastatic lung cells, which are related to the selection pressure of anti-tumor immunity during breast cancer metastasis. The approach paves the way for routine, precise, quantitative single-cell proteomics.
Patients with multiple myeloma have a compromised immune system, due to both the disease and antimyeloma therapies, and may therefore be particularly susceptible to COVID-19. Here, we report outcomes and risk factors for serious disease in patients with multiple myeloma treated at five large academic centers in New York City in the spring of 2020, during which it was a global epicenter of the SARS-CoV-2 pandemic. Of 100 patients with multiple myeloma (male 58%; median age 68) diagnosed with COVID-19, 75 were admitted; of these, 13 patients (17%) were placed on invasive mechanical ventilation, and 22 patients (29%) expired. Of the 25 nonadmitted patients, 4 were asymptomatic. There was a higher risk of adverse outcome (intensive care unit admission, mechanical ventilation, or death) in Hispanics/Latinos (n = 21), OR = 4.7 (95% confidence interval, 1.3-16.7), and African American Blacks (n = 33), OR = 3.5 (1.1-11.5), as compared with White patients (n = 36). Patients who met the adverse combined endpoint had overall higher levels of inflammatory markers and cytokine activation. None of the other studied risk factors were significantly associated (P > 0.05) with adverse outcome: hypertension (n = 56), OR = 2.2 (0.9-5.4); diabetes (n = 18), OR = 0.9 (0.3-2.9); age >65 years (n = 63), OR = 1.8 (0.7-4.6); high-dose melphalan with autologous stem cell transplant <12 months (n = 7), OR = 0.9 (0.2-5.4); and immunoglobulin G <650 mg/dL (n = 42), OR = 0.9 (0.3-2.2). In this largest cohort to date of patients with multiple myeloma and COVID-19, we found the case fatality rate to be 29% among hospitalized patients and that race/ethnicity was the most significant risk factor for adverse outcome. SIGNIFICANCE: Patients with multiple myeloma are immunocompromised, raising the question whether they are at higher risk of severe COVID-19 disease. In this large case series on COVID-19 in patients with multiple myeloma, we report 29% mortality rates among hospitalized patients and identify race/ ethnicity as the most significant risk factor for severe outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.