Background Prenatal cannabis exposure has been linked to addiction vulnerability, but the neurobiology underlying this risk is unknown. Methods Striatal dopamine and opioid-related genes were studied in human fetal subjects exposed to cannabis (as well as cigarettes and alcohol). Cannabis-related gene disturbances observed in the human fetus were subsequently characterized using an animal model of prenatal delta-9-tetrahydrocannabinol (THC; 0.15 mg/kg) exposure. Results Prenatal cannabis exposure decreased dopamine receptor D2 (DRD2) mRNA expression in the human ventral striatum (nucleus accumbens; NAc), a key brain reward region. No significant alterations were observed for the other genes in cannabis-exposed subjects. Maternal cigarette use was associated with reduced NAc prodynorphin mRNA expression and alcohol exposure induced broad alterations primarily in the dorsal striatum of most genes. To explore the mechanisms underlying the cannabis-associated disturbances, we exposed pregnant rats to THC and examined the epigenetic regulation of the NAc Drd2 gene in their offspring at postnatal day 2, comparable to the human fetal period studied, and in adulthood. Chromatin immunoprecipitation of the adult NAc revealed increased 2meH3K9 repressive mark and decreased 3meH3K4 and RNA polymerase II at the Drd2 gene locus in the THC-exposed offspring. Decreased Drd2 expression was accompanied by reduced D2R binding sites and increased sensitivity to opiate reward in adulthood. Conclusions These data suggest that maternal cannabis use alters developmental regulation of mesolimbic D2R in offspring through epigenetic mechanisms that regulate histone lysine methylation, and the ensuing reduction of D2R may contribute to addiction vulnerability later in life.
Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of the hippocampus. Multiple isoforms are transiently activated in the induction phase of long-term potentiation (LTP). In contrast, a single species, zeta, is persistently activated during the maintenance phase of LTP through the formation of an independent, constitutively active catalytic domain, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct regional pattern of high and low levels of expression. PKMzeta, the predominant form of PKM in brain, had high levels in hippocampus, frontal and occipital cortex, striatum, and hypothalamus. In the hippocampus, each isoform was expressed in a characteristic pattern, with zeta prominent in the CA1 stratum radiatum. These results suggest that the compartmentalization of PKC isoforms in neurons may contribute to their function, with the location of PKMzeta prominent in areas notable for long-term synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.