Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-d and -g isoforms. CaMKIId promotes VSM proliferation and vascular remodeling. We tested CaMKIIg function in vascular remodeling after injury. CaMKIIg protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIg C rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIId 2 adenovirus had no effect. Similar dynamics in CaMKIIg mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIg in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIg overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIg and -d isoforms have nonequivalent, opposing functions.
The multifunctional Ca2+/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury and whether ectopic expression of miR-30 can inhibit CaMKIIδ-dependent VSM cell function and neointimal VSM hyperplasia induced by vascular injury. The CaMKIIδ 3′UTR contains a consensus miR-30 binding sequence that is highly conserved across species. A significant decrease in miR-30 family members and increase in CaMKIIδ2 protein expression, with no change in CaMKIIδ mRNA expression, was observed in medial layers of VSM 7 days post-injury. In vitro, overexpression of miR-30c or miR-30e inhibited CaMKIIδ2 protein expression by ~50% in cultured rat aortic VSM cells, and inhibited VSM cell proliferation and migration. In vivo, lenti-viral delivery of miR-30c into injured rat carotid arteries prevented the injury-induced increase in CaMKIIδ2. Furthermore, neointima formation was dramatically inhibited by lenti-viral delivery of miR-30c in the injured medial smooth muscle. These studies define a novel mechanism for regulating CaMKIIδ expression in VSM and provide a new potential therapeutic strategy to reduce progression of vascular proliferative diseases, including atherosclerosis and restenosis.
Patients with chronic obstructive pulmonary disease (COPD) usually develop skeletal muscle dysfunction, which represents a major comorbidity in these patients and is strongly associated with mortality and other poor outcomes. Although clinical data indicates that accelerated protein degradation and metabolic disruption are common associations of muscle dysfunction in COPD, there is very limited data on the mechanisms regulating the process, in part, due to the lack of research performed on a validated animal model of pulmonary emphysema. This model deficiency complicates the translational value of data generated with highly reductionist settings. Here, we use an established transgenic animal model of COPD based on inducible IL-13-driven pulmonary emphysema (IL-13TG) to interrogate the mechanisms of skeletal muscle dysfunction. Skeletal muscles from these emphysematous mice develop most features present in COPD patients, including atrophy, decreased oxygen consumption, and reduced force-generation capacity. Analysis of muscle proteome indicates downregulation of succinate dehydrogenase C (SDH-C), which correlates with reduced enzymatic activity, also consistent with previous clinical observations. Ontology terms identified with human data, such as ATP binding/bioenergetics are also downregulated in this animal’s skeletal muscles. Moreover, chronic exercise can partially restore muscle mass, metabolic and force-generation capacity, and SDH activity in COPD mice. We conclude that this animal model of COPD/emphysema is an adequate platform to further investigate mechanisms of muscle dysfunction in this setting and demonstrates multiple approaches that can be used to address specific mechanisms regulating this process. NEW & NOTEWORTHY Skeletal muscle dysfunction is a relevant comorbidity in patients with chronic obstructive pulmonary disease (COPD). Mechanistic research in the area has so far been accomplished with models based on specific exposures to otherwise healthy animals, and no investigation using an established and validated animal model of COPD has been accomplished. We present an animal model of COPD that was previously shown to recapitulate pulmonary functional and histologic features present in patients with COPD, and demonstrates most of the features present in patients with pulmonary emphysema-associated muscle dysfunction, which we proposed as an adequate tool to develop mechanistic research in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.