Summary• We examined the relationships among productivity, water use efficiency ( WUE) and drought tolerance in 29 genotypes of Populus × euramericana ( Populus deltoides × Populus nigra ), and investigated whether some leaf traits could be used as predictors for productivity, WUE and drought tolerance.• At Orléans, France, drought was induced on one field plot by withholding water, while a second plot remained irrigated and was used as a control. Recorded variables included stem traits (e.g. biomass) and leaf structural (e.g. leaf area) and functional traits [e.g. intrinsic water use efficiency ( W i ) and carbon isotope discrimination ( ∆ )].• Productivity and ∆ displayed large genotypic variability and were not correlated. ∆ scaled negatively with W i and positively with stomatal conductance under moderate drought, suggesting that the diversity for ∆ was mainly driven by stomatal conductance.• Most of the productive genotypes displayed a low level of drought tolerance (i.e. a large reduction of biomass), while the less productive genotypes presented a large range of drought tolerance. The ability to increase WUE in response to water deficit was necessary but not sufficient to explain the genotypic diversity of drought tolerance.
The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stressrelated compounds, loss of CO 2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.
To understand key processes governing defense mechanisms in poplar (Populus spp.) upon infection with the rust fungus Melampsora larici-populina, we used combined histological and molecular techniques to describe the infection of Populus trichocarpa 3 Populus deltoides 'Beaupré' leaves by compatible and incompatible fungal strains. Striking differences in hosttissue infection were observed after 48-h postinoculation (hpi) between compatible and incompatible interactions. No reactive oxygen species production could be detected at infection sites, while a strong accumulation of monolignols occurred in the incompatible interaction after 48 hpi, indicating a late plant response once the fungus already penetrated host cells to form haustorial infection structures. P. trichocarpa whole-genome expression oligoarrays and sequencing of cDNAs were used to determine changes in gene expression in both interactions at 48 hpi. Temporal expression profiling of infection-regulated transcripts was further compared by cDNA arrays and reverse transcription-quantitative polymerase chain reaction. Among 1,730 significantly differentially expressed transcripts in the incompatible interaction, 150 showed an increase in concentration $3-fold, whereas 62 were decreased by $3-fold. Regulated transcripts corresponded to known genes targeted by R genes in plant pathosystems, such as inositol-3-P synthase, glutathione S-transferases, and pathogenesis-related proteins. However, the transcript showing the highest rust-induced up-regulation encodes a putative secreted protein with no known function. In contrast, only a few transcripts showed an altered expression in the compatible interaction, suggesting a delay in defense response between incompatible and compatible interactions in poplar. This comprehensive analysis of early molecular responses of poplar to M. larici-populina infection identified key genes that likely contain the fungus proliferation in planta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.