Previous work from our laboratory showed prevention of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) induced dopamine depletion in striatum of C57Bl/6 mice by 17beta-estradiol, progesterone, and raloxifene, whereas 17alpha-estradiol had no effect. The present study investigated the mechanism by which these compounds exert their neuroprotective activity. The hormonal effect on the dopamine transporter (DAT) was examined to probe the integrity of dopamine neurons and glutamate receptors in order to find a possible excitotoxic mechanism. Drugs were injected daily for 5 days before MPTP (four injections, 15 mg/kg ip at 2-h intervals) and drug treatment continued for 5 more days. MPTP induced a decrease of striatal DAT-specific binding (50% of control) and DAT mRNA in the substantia nigra (20% of control), suggesting that loss of neuronal nerve terminals was more extensive than cell bodies. This MPTP-induced decrease of striatal [(125)I]RTI-121 specific binding was prevented by 17beta-estradiol (2 microg/day), progesterone (2 microg/day), or raloxifene (5 mg/kg/day) but not by 17alpha-estradiol (2 microg/day) or raloxifene (1 mg/kg/day). No treatment completely reversed the decreased levels of DAT mRNA in the substantia nigra. Striatal [(125)I]RTI-121 specific binding was positively correlated with dopamine concentrations in intact, saline, or hormone-treated MPTP mice. Striatal NMDA-sensitive [(3)H]glutamate or [(3)H]AMPA specific binding remained unchanged in intact, saline, or hormone-treated MPTP mice, suggesting the unlikely implication of changes of glutamate receptors in an excitotoxic mechanism. These results show a stereospecific neuroprotection by 17beta-estradiol of MPTP neurotoxicity, which is also observed with progesterone or raloxifene treatment. The present paradigm modeled early DA nerve cell damage and was responsive to hormones.
Recent studies demonstrated that the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 and its receptor, CCR2, play important roles in various brain diseases. In this study, using quantitative autoradiography, we studied the pharmacological properties of [125 I]MCP-1/CCL2 binding in rat brain and we clearly showed the distribution of CCR2 receptors in cerebral cortex, nucleus accumbens, striatum, amygdala, thalamus, hypothalamus, hippocampus, substantia nigra, mammillary bodies and raphe nuclei. Moreover, using double fluorescent immunohistochemistry, we showed that CCR2 receptors were constitutively expressed on neurons and astrocytes. Using RT-PCR methods, we demonstrated that CCR2 mRNA is present in various brain areas described above. Four hours after an acute intraperitoneal lipopolysaccharide injection, we showed that MCP-1/CCL2 binding was up-regulated in several brain structures; this effect took place on both CCR2B labelled neurons and astrocytes and to a lesser extent on activated microglia. To explore neurobiological function of CCR2, actimetric study was carried out. After intracerebroventricular injections of MCP-1/CCL2, we showed that motor activity was markedly decreased. Abbreviations used: BSA, bovine serum albumin; DEPC, diethylpirocarbonate; EAE, experimental autoimmune encephalomyelitis; FITC, fluorescein isothiocyanate; GFAP, glial fibrillary acidic protein; IL-1, interleukin-1; IL-8, interleukin-8; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MIP-1a, macrophage inflammatory protein-1a; MS, multiple sclerosis; PBS, phosphatebuffered saline; RANTES, regulated on activation normal T-cell expressed and secreted; SDF-1a, stromal cell-derived factor-1a; TARC, thymus and activation-regulated chemokine; TRITC, tetramethylrhodamine isothiocyanate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.