Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca 2+ -activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca 2+ -regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness.
(D.W.M.) Brefeldin A (BFA) inhibits exocytosis but allows endocytosis, making it a valuable agent to identify molecules that recycle at cell peripheries. In plants, formation of large intracellular compartments in response to BFA treatment is a unique feature of some, but not all, cells. Here, we have analyzed assembly and distribution of BFA compartments in development-and tissue-specific contexts of growing maize (Zea mays) root apices. Surprisingly, these unique compartments formed only in meristematic cells of the root body. On the other hand, BFA compartments were absent from secretory cells of root cap periphery, metaxylem cells, and most elongating cells, all of which are active in exocytosis. We report that cell wall pectin epitopes counting rhamnogalacturonan II dimers cross-linked by borate diol diester, partially esterified (up to 40%) homogalacturonan pectins, and (134)--d-galactan side chains of rhamnogalacturonan I were internalized into BFA compartments. In contrast, Golgi-derived secretory (esterified up to 80%) homogalacturonan pectins localized to the cytoplasm in control cells and did not accumulate within characteristic BFA compartments. Latrunculin B-mediated depolymerization of F-actin inhibited internalization and accumulation of cell wall pectins within intracellular BFA compartments. Importantly, cold treatment and protoplasting prevented internalization of wall pectins into root cells upon BFA treatment. These observations suggest that cell wall pectins of meristematic maize root cells undergo rapid endocytosis in an F-actin-dependent manner.Eukaryotic cells perform endomembrane flow accomplished by vesicles shuttling among endoplasmic reticulum (ER), Golgi apparatus (GA), the plasma membrane (PM), and endosomes (for plants see Robinson et al., 1998; Hawes et al., 1999). These compartments and pathways of endomembrane flow are highly conserved in unicellular yeast, higher plants, and animals (for plant cells, see Robinson et al., 1998; Hawes et al., 1999). A major breakthrough in our current understanding of this complex endomembrane flow was provided by rediscovery of the fungal metabolite brefeldin A (BFA; Fujiwara et al., 1988). BFA action prevents vesicle formation in the exocytosis pathway by stabilizing abortive complexes between conserved ADP ribosylation factor 1 (ARF1) and the Sec7 domain of its guanine nucleotide exchange factor during the assembly of coat protein complexes of budding vesicles (for plants see, Pimpl et al., 2000;Robineau et al., 2000). Because of this action, BFA inhibits anterograde vesicular pathways while allowing endocytosis and some retrograde pathways to proceed further (Miller et al., 1992; Gaynor et al., 1998; Belanger and Quatrano, 2000). Moreover, BFA inhibits the endosome to vacuole transport in budding yeast (Gaynor et al., 1998).The introduction of BFA to investigate the cell biology of endomembrane flow in plant cells occurred some years later (Satiat-Jeunemaitre and Hawes, 1992), but most of the major findings concerning the effects of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.