Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues -a realisation of the Tycho-Gaia Astrometric Solution (TGAS) -and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr −1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr −1 . For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.
We introduce pyannote.audio, an open-source toolkit written in Python for speaker diarization. Based on PyTorch machine learning framework, it provides a set of trainable end-to-end neural building blocks that can be combined and jointly optimized to build speaker diarization pipelines. pyannote.audio also comes with pre-trained models covering a wide range of domains for voice activity detection, speaker change detection, overlapped speech detection, and speaker embedding -reaching state-of-the-art performance for most of them.
Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as G RVS ∼ 16. A specific stellar parametrization will be performed on most of these RVS spectra, i.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ∼14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims. We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B-to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods. Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10 −2.5 to 10 +0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results. For all the stellar types we considered, stars brighter than G RVS ∼ 12. while the log(g) derivation is more accurate (errors of 0.07 and 0.12 dex at G RVS = 12.6 and 13.4, respectively). For the faintest stars, with G RVS > ∼ 13−14, a T eff input from the spectrophotometric-derived parameters will allow the final GSP-Spec parametrization to be improved. Conclusions. The reported results, while neglecting possible mismatches between synthetic and real spectra, show that the contribution of the RVS-based stellar parameters will be unique in the brighter part of the Gaia survey, which allows for crucial age estimations and accurate chemical abundances. This will constitute a unique and precious sample, providing many pieces of the Milky Way history puzzle with unprecedented precision and statistical relevance.
The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (rms residuals) on F, G, K, M dwarfs and giants at G = 15 (V = 15-17) for a wide range of metallicites and interstellar extinctions of around 100 K in effective temperature (T eff ), 0.1 mag in extinction (A 0 ), 0.2 dex in metallicity ([Fe/H]), and 0.25 dex in surface gravity (log g). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in December 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.