Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set. File list (3) download file view on ChemRxiv manuscript.pdf (4.23 MiB) download file view on ChemRxiv supplementary.pdf (0.92 MiB) download file view on ChemRxiv tables.zip (5.99 KiB)
Purpose: The mesenchymal-epithelial transition factor (c-Met) receptor, also known as hepatocyte growth factor receptor (HGFR), controls morphogenesis, a process that is physiologically required for embryonic development and tissue repair. Aberrant c-Met activation is associated with a variety of human malignancies including cancers of the lung, kidney, stomach, liver, and brain. In this study, we investigated the properties of two novel compounds developed to selectively inhibit the c-Met receptor in antitumor therapeutic interventions.Experimental Design: The pharmacologic properties, c-Met inhibitory activity, and antitumor effects of EMD 1214063 and EMD 1204831 were investigated in vitro and in vivo, using human cancer cell lines and mouse xenograft models.Results: EMD 1214063 and EMD 1204831 selectively suppressed the c-Met receptor tyrosine kinase activity. Their inhibitory activity was potent [inhibitory 50% concentration (IC 50 ), 3 nmol/L and 9 nmol/L, respectively] and highly selective, when compared with their effect on a panel of 242 human kinases. Both EMD 1214063 and EMD 1204831 inhibited c-Met phosphorylation and downstream signaling in a dose-dependent fashion, but differed in the duration of their inhibitory activity. In murine xenograft models, both compounds induced regression of human tumors, regardless of whether c-Met activation was HGF dependent or independent. Both drugs were well tolerated and induced no substantial weight loss after more than 3 weeks of treatment.Conclusions: Our results indicate selective c-Met inhibition by EMD 1214063 and EMD 1204831 and strongly support clinical testing of these compounds in the context of molecularly targeted anticancer strategies.
Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set.<br>
The neutral amino acid transporter solute carrier family 1 member 5 (SLC1A5 or ASCT2) is overexpressed in many cancers. To identify its roles in tumors, we employed 143B osteosarcoma cells and HCC1806 triple-negative breast cancer cells with or without ASCT2 deletion. ASCT2ko 143B cells grew well in standard culture media, but ASCT2 was required for optimal growth at <0.5 mM glutamine, with tumor spheroid growth and monolayer migration of 143B ASCT2ko cells being strongly impaired at lower glutamine concentrations. However, the ASCT2 deletion did not affect matrix-dependent invasion. ASCT2ko 143B xenografts in nude mice exhibited a slower onset of growth and a higher number of small tumors than ASCT2wt 143B xenografts, but did not differ in average tumor size 25 days after xenotransplantation. ASCT2 deficiency was compensated by increased levels of sodium neutral amino acid transporter 1 (SNAT1 or SLC38A1) and SNAT2 (SLC38A2) in ASCT2ko 143B cells, mediated by a GCN2 EIF2␣ kinase (GCN2)-dependent pathway, but this compensation was not observed in ASCT2ko HCC1806 cells. Combined SNAT1 silencing and GCN2 inhibition significantly inhibited growth of ASCT2ko HCC1806 cells, but not of ASCT2ko 143B cells. Similarly, pharmacological inhibition of L-type amino acid transporter 1 (LAT1) and GCN2 significantly inhibited growth of ASCT2ko HCC1806 cells, but not of ASCT2ko 143B cells. We conclude that cancer cells with reduced transporter plasticity are more vulnerable to disruption of amino acid homeostasis than cells with a full capacity to up-regulate redundant transporters by an integrated stress response.
Drug lead compound identification increasingly uses high‐throughput screening in conjunction with computational methods. Hits found in this way are generally of low affinity (typically about 10−5 M) and require further development. Such low affinity can result in significant changes in binding mode upon change of experimental conditions: at pH 7, the Factor Xa inhibitor 1 (see picture) binds in the specificity pocket of trypsin through its pyridinyl group (yellow); at pH 8, the same pocket is occupied by the chloronaphthyl moiety (magenta), with a significant reorganization of the ligand binding site (circled).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.