Purpose: To address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC). Experimental Design: Transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Results: Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern (''metastatic signature'') derived from primary tumor was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described ''global'' metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Conclusion: Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC.
The mechanisms leading to prostate cancer metastasis are not understood completely. Although there is evidence that the CXC chemokine receptor (CXCR) 4 and its ligand CXCL12 may regulate tumor dissemination, their role in prostate cancer is controversial. We examined CXCR4 expression and functionality, and explored CXCL12-triggered adhesion of prostate tumor cells to human endothelium or to extracellular matrix proteins laminin, collagen, and fibronectin. Although little CXCR4 was expressed on LNCaP and DU-145 prostate tumor cells, CXCR4 was still active, enabling the cells to migrate toward a CXCL12 gradient. CXCL12 induced elevated adhesion to the endothelial cell monolayer and to immobilized fibronectin, laminin, and collagen. Anti-CXCR4 antibodies or CXCR4 knock out significantly impaired CXCL12-triggered tumor cell binding. The effects observed did not depend on CXCR4 surface expression level. Rather, CXCR4-mediated adhesion was established by alpha5 and beta3 integrin subunits and took place in the presence of reduced p38 and p38 phosphorylation. These data show that chemoattractive mechanisms are involved in adhesion processes of prostate cancer cells, and that binding of CXCL12 to its receptor leads to enhanced expression of alpha5 and beta3 integrins. The findings provide a link between chemokine receptor expression and integrin-triggered tumor dissemination.
Histone deacetylase (HDAC) inhibitors represent a promising class of antineoplastic agents which affect tumour growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre‐clinical renal cell carcinoma (RCC) models. Caki‐1, KTC‐26 or A498 cells were treated with various concentrations of VPA during in vitro cell proliferation 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays and to evaluate cell cycle manipulation. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. The anti‐tumoural potential of VPA combined with low‐dosed interferon‐α (IFN‐α) was also investigated. VPA significantly and dose‐dependently up‐regulated histones H3 and H4 acetylation and caused growth arrest in RCC cells. VPA altered cell cycle regulating proteins, in particular CDK2, cyclin B, cyclin D3, p21 and Rb. In vivo, VPA significantly inhibited the growth of Caki‐1 in subcutaneous xenografts, accompanied by a strong accumulation of p21 and bax in tissue specimens of VPA‐treated animals. VPA–IFN‐α combination markedly enhanced the effects of VPA monotherapy on RCC proliferation in vitro, but did not further enhance the anti‐tumoural potential of VPA in vivo. VPA was found to have profound effects on RCC cell growth, lending support to the initiation of clinical testing of VPA for treating advanced RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.