TERT-locus single nucleotide polymorphisms (SNPs) and leucocyte telomere measures are reportedly associated with risks of multiple cancers. Using the iCOGs chip, we analysed ~480 TERT-locus SNPs in breast (n=103,991), ovarian (n=39,774) and BRCA1 mutation carrier (11,705) cancer cases and controls. 53,724 participants have leucocyte telomere measures. Most associations cluster into three independent peaks. Peak 1 SNP rs2736108 minor allele associates with longer telomeres (P=5.8×10 −7 ), reduced estrogen receptor negative (ER-negative) (P=1.0×10 −8 ) and BRCA1 mutation carrier (P=1.1×10 −5 ) breast cancer risks, and altered promoter-assay signal. Peak 2 SNP rs7705526 minor allele associates with longer telomeres (P=2.3×10 −14 ), increased low malignant potential ovarian cancer risk (P=1.3×10 −15 ) and increased promoter activity. Peak 3 SNPs rs10069690 and rs2242652 minor alleles increase ER-negative (P=1.2×10 −12 ) and BRCA1 mutation carrier (P=1.6×10 −14 ) breast and invasive ovarian (P=1.3×10 −11 ) cancer risks, but not via altered telomere length. The cancer-risk alleles of rs2242652 and rs10069690 respectively increase silencing and generate a truncated TERT splicevariant.
Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer.
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants (CCVs) in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium, and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR) = 1.13, P = 3.1 × 10−10) and clear cell (rs11651755 OR = 0.77, P = 1.6 × 10−8) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.