Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans.
Background: Coxiella burnetii, the causative agent of Q fever, has a wide host range. Few epidemiological tools are available, and they are often expensive or not easily standardized across laboratories. In this work, C. burnetii isolates from livestock and ticks were typed using infrequent restriction site-PCR (IRS-PCR) and multiple loci variable number of tandem repeats (VNTR) analysis (MLVA).
The objective of the present study was to establish a system of real-time polymerase chain reactions (PCRs) for the specific detection of Yersinia pestis using the LightCycler (LC) instrument. Twenty-five strains of Y. pestis, 94 strains of other Yersinia species and 33 clinically relevant bacteria were investigated. Assays for the 16S rRNA gene target and the plasminogen activator gene (resides on the 9.5-kb plasmid) and for the Y. pestis murine toxin gene and the fraction 1 antigen gene (both on the 100-kb plasmid) were combined for the use in two multiplex assays including an internal amplification control detecting bacteriophage lambda-DNA. Applying these multiplex assays, Y. pestis was selectively identified; other bacteria yielded no amplification products. The lower limit of detection was approximately 0.1 genome equivalent. Rat or flea DNA had no inhibitory effects on the detection of Y. pestis. The results obtained using the multiplex real-time assays showed 100% accuracy when compared with combinations of conventional PCR assays. We developed and evaluated a highly specific real-time PCR strategy for the detection of Y. pestis, obtaining results within 3 h including DNA preparation.
BackgroundHyalomma marginatum and Hyalomma rufipes are two-host tick species, which are mainly distributed in southern Europe, Africa and middle-eastern Asia. They are well-known vectors of Crimean Congo hemorrhagic fever (CCHF) virus and other viruses as well as Rickettsia aeschlimannii. In recent years, these tick species have been found sporadically in Germany, but they do not belong to the autochthonous tick fauna in Germany.MethodsTicks with unusual morphology were collected and sent from private persons or public health offices to involve institutions for morphological identification and further testing. All ticks identified as Hyalomma spp. were tested using molecular detection methods for CCHF virus, Rickettsia spp., Coxiella burnetii and Coxiella-like organisms, Babesia spp. and Theileria spp.ResultsThirty-five ticks with an unusual appearance or behaviour were reported to us during summer-autumn 2018. For 17 of them, the description or photos implied that they belong to the hard tick genus Hyalomma. The remaining 18 ticks were sent to us and were identified as adult Hyalomma marginatum (10 specimens) or adult Hyalomma rufipes (8 specimens). All ticks tested negative for CCHF virus, Coxiella burnetii, Coxiella-like organisms, Babesia spp. and Theileria spp. The screening for rickettsiae gave positive results in 9 specimens . The Rickettsia species in all cases was identified as R. aeschlimannii.ConclusionsThese results show that exotic tick species imported into Germany were able to develop from the nymphal to the adult stage under appropriate weather conditions. Fifty percent of the ticks carried R. aeschlimannii, a human pathogen, while CCHF virus or other pathogens were not detected. Imported Hyalomma ticks may be the source of exotic diseases acquired in Germany.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.