second model, the two main conditions were parametrically modulated by the two categories, respectively (SOM, S5.1). The activation of the precuneus was higher for hard dominance-solvable games than for easy ones ( Fig. 4A and table S10). The activation of the insula was higher for the highly focal coordination games than for less focal ones ( Fig. 4B and table S11). Previous studies also found that precuneus activity increased when the number of planned moves increased (40, 41). The higher demand for memory-related imagery and memory retrieval may explain the greater precuneus activation in hard dominance-solvable games. In highly focal coordination games, the participants may have felt quite strongly that the pool students must notice the same salient feature. This may explain why insula activation correlates with NCI.Participants might have disagreed about which games were difficult. We built a third model to investigate whether the frontoparietal activation correlates with how hard a dominance-solvable game is and whether the activation in insula and ACC correlates with how easy a coordination game is. Here, the two main conditions were parametrically modulated by each participant's probability of obtaining a reward in each game (SOM, S2.2 and S5.2). We found a negative correlation between the activation of the precuneus and the participant's probability of obtaining a reward in dominance-solvable games ( Fig. 4C and table S12), which suggests that dominance-solvable games that yielded lower payoffs presented harder mental challenges. In a previous study on working memory, precuneus activity positively correlated with response times, a measure of mental effort (24). Both findings are consistent with the interpretation that subjective measures reflecting harder tasks (higher efforts) correlate with activation in precuneus. A positive correlation between insula activation and the participant's probability of obtaining a reward again suggests that coordination games with a highly salient feature strongly activated the "gut feeling" reported by many participants (Fig. 4D and table S13). A previous study found that the subjective rating of "chills intensity" in music correlates with activation of insula (42). Both findings are consistent with the interpretation that the subjective intensity of how salient a stimulus is correlates with activation in insula.As mentioned, choices were made significantly faster in coordination games than in dominancesolvable games. The results of the second and third models provide additional support for the idea that intuitive and deliberative mental processes have quite different properties. The "slow and effortful" process was more heavily taxed when the dominance-solvable games were harder. The "fast and effortless" process was more strongly activated when coordination was easy.
Painful peripheral neuropathy often occurs without apparent underlying cause. Gain-of-function variants of sodium channel Na v 1.7 have recently been found in ∼30% of cases of idiopathic painful small-fiber neuropathy. Here, we describe mutations in Na v 1.8, another sodium channel that is specifically expressed in dorsal root ganglion (DRG) neurons and peripheral nerve axons, in patients with painful neuropathy. Seven Na v 1.8 mutations were identified in 9 subjects within a series of 104 patients with painful predominantly small-fiber neuropathy. Three mutations met criteria for potential pathogenicity based on predictive algorithms and were assessed by voltage and current clamp. Functional profiling showed that two of these three Na v 1.8 mutations enhance the channel's response to depolarization and produce hyperexcitability in DRG neurons. These observations suggest that mutations of Na v 1.8 contribute to painful peripheral neuropathy.dorsal root ganglia | patch clamp P ainful peripheral neuropathy involving small-diameter nociceptive nerve fibers represents a significant public health challenge (1); in about one-half of cases, no cause can be identified (1). Faber et al. (2) recently described gain-of-function variants (single amino acid substitutions) in sodium channel Na v 1.7, which is abundantly expressed in spinal sensory [dorsal root ganglion (DRG)] neurons and their axons (3) in nearly 30% of patients with biopsy-confirmed, painful small-fiber neuropathy (SFN) and no other apparent cause. These variants increase the excitability of DRG neurons, providing an explanation for pain in these patients. Molecular substrates for pain in the remaining SFN patients remain unknown. Here, we describe gain-of-function mutations in Na v 1.8, another sodium channel that is specifically expressed in DRG neurons and peripheral nerve axons, in human subjects with painful neuropathy, including a father-son pair. These mutations alter gating properties of the channel in a proexcitatory manner and increase the excitability of DRG neurons. These genetic and functional observations suggest that Na v 1.8 mutations contribute to pain in some peripheral neuropathies.
The data suggest that EZH2 plays a role in glioma progression and encourage the therapeutic targeting of these malignancies by HDAC inhibitors.
miR-145 is an important repressor of pluripotency in embryonic stem cells and a tumor suppressor in different cancers. Here, we found that miR-145 is strongly down-regulated in glioblastoma (GB) specimens and corresponding glioblastoma-neurospheres (GB-NS, containing GB stem-like cells) compared to normal brain (NB) and to low-grade gliomas (LGG). We observed a direct correlation between miR-145 expression and the progression-free survival (PFS) in LGG patients and overall survival (OS) in GB patients. Using microarray analysis, we identified relevant differences in gene expression profiles between GB-NS over-expressing miR-145 (miRover-NS) and GB-NS Empty (Empty-NS). We focused our attention on HEF1/Cas-L/NEDD9, a scaffold protein involved in invasion in several types of cancer. We confirmed a significant down-regulation of NEDD9 in miRover-NS and we found a higher expression in GB and GB-NS compared to NB. Approximately 50% of LGG patients expressed higher levels of NEDD9 than NB, and the PFS of such patients was shorter than in patients expressing lower levels of NEDD9. We observed that intracranial injection of GB-NS over-expressing miR-145 delays significantly tumor development: deriving tumors showed a significant down-regulation of NEDD9. In addition, we demonstrated a significant inhibition of invasion in silencing experiments with GB-NS shNEDD9 (shNEDD9), and an up-regulation of miR-145 in shNEDD9, suggesting a double-negative feedback loop between miR-145 and NEDD9. Our results demonstrate the critical role of miR-145 and NEDD9 in regulating glioblastoma invasion and suggest a potential role of NEDD9 as a biomarker for glioma progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.