Our findings reveal that Nampt protects against ischemic stroke through rescuing neurons from death via the SIRT1-dependent AMPK pathway and indicate that Nampt is a new therapeutic target for stroke.
Recent reports indicate that autophagy serves as a stress response and may participate in the pathophysiology of cerebral ischemia. Nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), the rate-limiting enzyme in mammalian NAD + biosynthesis, protects against ischemic stroke through inhibiting neuronal apoptosis and necrosis. This study sought to determine the involvement of autophagy in neuroprotection of Nampt in cerebral ischemia. Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation (OGD) in cultured cortical neurons were performed. Nampt was overexpressed or knocked down using lentivirus-mediated gene transfer in vivo and in vitro. Immunochemistry (LC3-II), electron microscope and immunoblotting assays (LC3-II, Beclin 1, mammalian target of rapamycin [mTOR], S6K1 and tuberous sclerosis complex-2 [TSC2]) were performed to assess autophagy. We found that overexpression of Nampt increased autophagy (LC3 puncta immunochemistry staining, LC3-II/Beclin 1 expression and autophagosomes number) both in vivo and in vitro at 2 h after MCAO. At the early stage of OGD, autophagy-inducer rapamycin protected against neuronal injury induced by Nampt knockdown, whereas autophagy-inhibitor 3-methyladenine partly abolished the neuroprotective effect of Nampt. Overexpression or knockdown of Nampt regulated the phosphorylation of mTOR and S6K1 signaling pathway upon OGD stress through enhancing phosphorylation of TSC2 at Ser1387 but not Thr1462 site. Furthermore, in cultured SIRT1-knockout neurons, the regulation of Nampt on autophagic proteins LC3-II and Beclin 1 was abolished. Our results demonstrate that Nampt promotes neuronal survival through inducing autophagy via regulating the TSC2-mTOR-S6K1 signaling pathway in a SIRT1-dependent manner during cerebral ischemia.
The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases.
Orosomucoid (ORM), or alpha-1-acid glycoprotein (AGP), is one of the acute-phase proteins. It has a molecular weight of 37-54 kDa, low pI of 2.8-3.8, and is heavily glycosylated (45 %). It is mainly synthesized by the liver, but many extrahepatic tissues have also been reported to produce ORM under myriad physiological and pathological conditions. Expression of the ORM gene is mainly controlled by a combination of the major regulatory mediators, such as glucocorticoids, interleukin (IL)-1, TNF-α, and IL-6. ORM has many activities including, but not limited to, acting as an acute-phase reactant and disease marker, modulating immunity, binding and carrying drugs, maintaining the barrier function of capillary, and mediating the sphingolipid metabolism. Its related receptor has been preliminarily explored in macrophages, neutrophils, and liver parenchymal cells, involving the membrane receptor CCR5, Siglect-5, and HBB, respectively. Additional activities of ORM such as regulating metabolism are currently being explored. Because of its regulation in liver diseases, cancer, and HIV, future ORM research is warranted.
Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.