MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.). TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS- and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.
The expression of BdWRKY36 was upregulated by drought treatment. BdWRKY36 -overexpressing transgenic tobacco increased drought tolerance by controlling ROS homeostasis and regulating transcription of stress related genes. WRKY transcription factor plays important roles in plant growth, development and stress response. However, the function of group IIe WRKYs is less known. In this study, we cloned and characterized a gene of group IIe WRKY, designated as BdWRKY36, from Brachypodium distachyon. Transient expression of BdWRKY36 in onion epidermal cell suggested its localization in the nucleus. Transactivation assay revealed that the C-terminal region, instead of full length BdWRKY36, had transcriptional activity. BdWRKY36 expression was upregulated by drought. Overexpression of BdWRKY36 in transgenic tobacco plants resulted in enhanced tolerance to drought stress. Physiological-biochemical indices analyses showed that BdWRKY36-overexpressing tobacco lines had lesser ion leakage (IL) and reactive oxygen species (ROS) accumulation, but higher contents of chlorophyll, relative water content (RWC) and activities of antioxidant enzyme than that in control plants under drought condition. Meanwhile expression levels of some ROS-scavenging and stress-responsive genes were upregulated in BdWRKY36-overexpressing tobacco lines under drought stress. These results demonstrate that BdWRKY36 functions as a positive regulator of drought stress response by controlling ROS homeostasis and regulating transcription of stress related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.