The nucleotide sequence of molecular clones of DNA from a retrovirus, ARV-2, associated with the acquired immune deficiency syndrome (AIDS) was determined. Proviral DNA of ARV-2 (9737 base pairs) has long terminal repeat structures (636 base pairs) and long open reading frames encoding gag (506 codons), pol (1003 codons), and env (863 codons) genes. Two additional open reading frames were identified. Significant amino acid homology with several other retroviruses was noted in the predicted product of gag and pol, but ARV-2 was as closely related to murine and avian retroviruses as it was to human T-cell leukemia viruses (HTLV-I and HTLV-II). By means of an SV-40 vector in transfected simian cells, the cloned gag and env genes of ARV-2 were shown to express viral proteins.
The RNA genome of human hepatitis A virus (HAV) was molecularly cloned. Recombinant DNA clones representing the entire HAV RNA were used to determine the primary structure of the viral genome. The length of the viral genome is 7478 nucleotides. An open reading frame starting at nucleotide 734 and terminating at nucleotide 7415 encodes a polyprotein of Mr 251,940. Comparison of the HAV nucleotide sequence with that of other picornaviruses has failed to reveal detectable areas of homology. However, a computer analysis of the putative amino acid sequence of HAV and poliovirus demonstrated the existence of short areas of homology in virion protein 3 (VP3) and throughout the carboxyl-terminal portion of the polyproteins. In addition, extensive protein structural homologies with poliovirus were detected.
The genome of the human immunodeficiency virus type 1 (HIV-1) is highly heterogeneous. Some of this genomic variability is reflected in the biologic and serologic differences observed among various strains of HIV-1. To map the viral determinants that correlate with pathogenicity of the virus, recombinant viruses were generated between biologically active molecular clones of HIV-1 strains that show differences in T-cell or macrophage tropism, cytopathogenicity, CD4 antigen modulation, and susceptibility to serum neutralization. The results of these studies indicate that the envelope region contains the major determinants of these viral features. Further studies with sequence exchanges within this region should help identify specific domains that
AIDS (acquired immune deficiency syndrome) and ARC (AIDS-related complex) are associated with a spectrum of lymphoproliferative disorders ranging from lymphadenopathy syndrome (LAS), an apparently benign polyclonal lymphoid hyperplasia, to B cell non-Hodgkin's lymphoma (B-NHL), i.e., malignant, presumably monoclonal B cell proliferations. To gain insight into the process of lymphomagenesis in AIDS and to investigate a possible pathogenetic relationship between LAS and NHL, we investigated the clonality of the B or T lymphoid populations by Ig or T beta gene rearrangement analysis, the presence of rearrangements involving the c-myc oncogene locus, and the presence of human immunodeficiency virus (HIV) sequences in both LAS and B-NHL biopsies. Our data indicate that multiple clonal B cell expansions are present in a significant percentage of LAS (approximately 20%) and B-NHL (60%) biopsies. c-myc rearrangements/translocations are detectable in 9 of our 10 NHLs, but not in any of the LAS cases. However, only one of the B cell clones, identified by Ig gene rearrangements carries a c-myc gene rearrangement, suggesting that only one clone carries the genetic abnormality associated with malignant B cell lymphoma. Furthermore, the frequency of detection of c-myc rearrangements in AIDS-associated NHLs of both Burkitt and non-Burkitt type suggest that the biological alterations present in AIDS favor the development of lymphomas carrying activated c-myc oncogenes. Finally, our data show that HIV DNA sequences are not detectable in LAS nor in NHL B cell clones, suggesting that HIV does not play a direct role in NHL development. Taken together, these observations suggest a model of multistep lymphomagenesis in AIDS in which LAS would represent a predisposing condition to NHL. Immunosuppression and EBV infection present in LAS can favor the expansion of B cell clones, which in turn may increase the probability of occurrence of c-myc rearrangements leading to malignant transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.