Wnts modulate cell proliferation, differentiation and stem cell self-renewal, by inducing β-catenin dependent signaling through Frizzled (Fzd) and Lrp5/6 to regulate cell fate decisions, and the growth and repair of a multitude of tissues1. The 19 mammalian Wnts interact promiscuously with the 10 Fzds, which has complicated the attribution of specific Fzd/Wnt subtype interactions to distinct biological functions. Furthermore, Wnts are post-translationally modified by palmitoylation, which is essential for Wnt secretion and functions as a critical site of interaction with Fzd 2–4. As a result of their acylation, Wnts are very hydrophobic proteins requiring detergents for purification, which presents major obstacles for the preparation and application of recombinant Wnts. This has hindered the delineation of the molecular mechanisms of Wnt signaling activation, understanding of the functional significance of Fzd subtypes, and the use of Wnts as therapeutics. Here we developed surrogate Wnt agonists, water-soluble Fzd-Lrp5/6 heterodimerizers, consisting of Fzd5/8-specific and broadly Fzd-reactive binding domains, that elicit a characteristic β-catenin signaling response in a Fzd-selective fashion, enhance osteogenic lineage commitment of primary mesenchymal stem cells (MSCs), and support the growth of a broad range of primary human organoid cultures comparably to Wnt3a. Furthermore, we demonstrate that the surrogates can be systemically expressed and exhibit Wnt activity in vivo, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signaling can be activated simply through bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced non-lipidated Wnt surrogate agonists offer a new avenue to facilitate functional studies of Wnt signaling and the exploration of Wnt agonists for translational applications in regenerative medicine.
SUMMARY WNT7A and WNT7B control CNS angiogenesis and blood-brain barrier formation by activating endothelial Wnt/β-catenin signaling. The GPI-anchored protein RECK and adhesion G protein-coupled receptor GPR124 critically regulate WNT7-specific signaling in concert with FZD and LRP co-receptors. Here, we demonstrate that primarily the GPR124 ectodomain, but not its transmembrane and intracellular domains, mediates RECK/WNT7-induced canonical Wnt signaling. Moreover, RECK is the predominant binding partner of GPR124 in rat brain blood vessels in situ. WNT7A and WNT7B, but not WNT3A, directly bind to purified recombinant soluble RECK, full-length cell surface RECK, and the GPR124:RECK complex. Chemical cross-linking indicates that RECK and WNT7A associate with 1:1 stoichiometry, which stabilizes short-lived, active, monomeric, hydrophobic WNT7A. In contrast, free WNT7A rapidly converts into inactive, hydrophilic aggregates. Overall, RECK is a selective WNT7 receptor that mediates GPR124/FZD/LRP-dependent canonical Wnt/β-catenin signaling by stabilizing active cell surface WNT7, suggesting isoform-specific regulation of Wnt bioavailability.
Highlights d Human IgSF interactome reveals complex network of cellsurface protein interactions d Phylogenetic homology analysis predicts protein-protein interactions d 380 previously unknown protein-protein interactions identified d Deorphanization of receptors and new binding partners for well-studied receptors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.