HDL and apoA-I exhibit an antiinflammatory effect on human monocytes by inhibiting activation of CD11b. ApoA-I acts through ABCA1, whereas HDL may act through several receptors.
Background-Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP-activated protein kinase, in skeletal muscle. Methods and Results-Thirteen patients with type 2 diabetes mellitus received both intravenous reconstituted HDL (rHDL: 80 mg/kg over 4 hours) and placebo on separate days in a double-blind, placebo-controlled crossover study. A greater fall in plasma glucose from baseline occurred during rHDL than during placebo (at 4 hours rHDLϭϪ2.6Ϯ0.4; placeboϭϪ2.1Ϯ0.3mmol/L; Pϭ0.018). rHDL increased plasma insulin (at 4 hours rHDLϭ3.4Ϯ10.0; placeboϭ Ϫ19.2Ϯ7.4 pmol/L; Pϭ0.034) and also the homeostasis model assessment -cell function index (at 4 hours rHDLϭ18.9Ϯ5.9; placeboϭ8.6Ϯ4.4%; Pϭ0.025). Acetyl-CoA carboxylase  phosphorylation in skeletal muscle biopsies was increased by 1.7Ϯ0.3-fold after rHDL, indicating activation of the AMP-activated protein kinase pathway. Both HDL and apolipoprotein AI increased glucose uptake (by 177Ϯ12% and 144Ϯ18%, respectively; PϽ0.05 for both) in primary human skeletal muscle cell cultures established from patients with type 2 diabetes mellitus (nϭ5). The mechanism is demonstrated to include stimulation of the ATP-binding cassette transporter A1 with subsequent activation of the calcium/calmodulin-dependent protein kinase kinase and the AMP-activated protein kinase pathway. Conclusions-rHDL reduced plasma glucose in patients with type 2 diabetes mellitus by increasing plasma insulin and activating AMP-activated protein kinase in skeletal muscle. These findings suggest a role for HDL-raising therapies beyond atherosclerosis to address type 2 diabetes mellitus. Key Words: glucose Ⅲ insulin Ⅲ lipoproteins Ⅲ metabolism Ⅲ muscles H igh-density lipoprotein (HDL) is associated with protection from adverse cardiovascular outcomes in large epidemiological trials. 1 Type 2 diabetes mellitus and the cluster of pathologies including glucose intolerance/insulin resistance, obesity, and high plasma triglycerides that constitute the metabolic syndrome are associated with low and dysfunctional HDL. 2,3 In contrast, aerobically trained individuals have high HDL and display enhanced glucose tolerance. 4 Although the mechanisms linking low HDL to atherosclerosis are well characterized, the links between low HDL and disordered energy metabolism remain relatively unexplored. Given the high and escalating prevalence of type 2 diabetes mellitus, obesity, and the metabolic syndrome and the associated marked elevation in cardiovascular morbidity and mortality, this is an important area of investigation. Clinical Perspective p 2111Recent cell-based studies suggest that HDL may modulate plasma glucose through both insulin-dependent 5,6 and -independent mechanisms. 7 The ATP-binding cassette transporter A1 (ABCA1) has been shown to modulate insulin secretion, 6 and HDL can reverse ...
Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1–infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings have implications for pathogenesis of both HIV disease and atherosclerosis, because they reveal the role of cholesterol efflux impairment in HIV infectivity and suggest a possible mechanism by which HIV infection of macrophages may contribute to increased risk of atherosclerosis in HIV-infected patients.
Abstract-Studies have shown a reduction in plaque volume and change in plaque ultrasound characteristics after 4 infusions of reconstituted high-density lipoprotein (rHDL). Whether rHDL infusion leads to acute changes in plaque characteristics in humans is not known. Patients with claudication scheduled for percutaneous superficial femoral artery revascularization were randomized to receive 1 intravenous infusion of either placebo or rHDL (80 mg/kg given over 4 hours). Five to 7 days following the infusion, patients returned and revascularization was performed including atherectomy to excise plaque from the superficial femoral artery. Twenty patients (17 males) average age, 68Ϯ10 years (meanϮSD) were recruited. Eleven patients had a history of documented coronary artery disease, all patients were on aspirin, and 18 were on statins. Ten of the patients received rHDL and 10 placebo. There was significantly less vascular cell adhesion molecule-1 expression (28Ϯ3% versus 50Ϯ3%; PϽ0.05) and a reduction in lipid content in the plaque of HDL-treated subjects compared to placebo. The level of HDL cholesterol increased by 20% after infusion of rHDL and the capacity of apolipoprotein B-depleted plasma to support cholesterol efflux increased. Intravenous infusion of a single dose of reconstituted HDL led to acute changes in plaque characteristics with a reduction in lipid content, macrophage size, and measures of inflammation. These changes may contribute to the cardioprotective effects of HDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.