Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.
Genetic variation of leaf proteome in drought response was investigated among eight Populus xeuramericana genotypes contrasting for their leaf carbon isotope discrimination (Delta), an estimate of intrinsic water-use efficiency. Plants were grown in open field on two similar plots. Drought was induced by an 86-day irrigation cessation on one plot, whereas a second plot remained regularly irrigated. Using 2-DE, 863 reproducible spots were detected; about 60% presented at least one significant effect i.e. treatment, genotype and/or genotype by treatment interaction effect. A significant genotype by treatment interaction was detected for 62 reliably identified proteins among which, about 65% consisted in chloroplast-associated proteins either involved in the Calvin cycle or in the electron-transport chains. The other proteins were involved in oxidative stress, amino acid or protein metabolisms. Correlations between protein abundance and Delta variations were found for 45 reliably identified proteins. The abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms scaled negatively with Delta regardless of the treatment, suggesting that a large intrinsic water-use efficiency could be due to higher abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase activase. Under control condition, abundance of enzymes involved in carbon fixation was also negatively correlated with Delta, whereas abundance of enzymes involved in photorespiration or respiration was positively correlated with Delta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.