Breast cancer is a heterogeneous disease, and within the HER-2 positive subtype this is highly exemplified by the presence of substantial phenotypical and clinical heterogeneity, mostly related to hormonal receptor (HR) expression. It is well known how HER-2 positivity is commonly associated with a more aggressive tumor phenotype and decreased overall survival and, moreover, with a reduced benefit from endocrine treatment. Preclinical studies corroborate the role played by functional crosstalks between HER-2 and estrogen receptor (ER) signaling in endocrine resistance and, more recently, the activation of ER signaling is emerging as a possible mechanism of resistance to HER-2 blocking agents. Indeed, HER-2 positive breast cancer heterogeneity has been suggested to underlie the variability of response not only to endocrine treatments, but also to HER-2 blocking agents. Among HER-2 positive tumors, HR status probably defines two distinct subtypes, with dissimilar clinical behavior and different sensitivity to anticancer agents. The triple positive subtype, namely, ER/PgR/Her-2 positive tumors, could be considered the subset which most closely resembles the HER-2 negative/HR positive tumors, with substantial differences in biology and clinical outcome. We argue on whether in this subgroup the "standard" treatment may be considered, in selected cases, i.e., small tumors, low tumor burden, high expression of both hormonal receptors, an overtreatment. This article review the existing literature on biologic and clinical data concerning the HER-2/ER/PgR positive tumors, in an attempt to better define the HER-2 subtypes and to optimize the use of HER-2 targeted agents, chemotherapy and endocrine treatments in the various subsets.
Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.
Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease.
We addressed trastuzumab emtansine (T-DM1) efficacy in HER2+ metastatic breast cancer patients treated in real-world practice, and its activity in pertuzumab-pretreated patients. We conducted a retrospective, observational study involving 23 cancer centres, and 250 patients. Survival data were analyzed by Kaplan Meier curves and log rank test. Factors testing significant in univariate analysis were tested in multivariate models. Median follow-up was 15 months and median T-DM1 treatment-length 4 months. Response rate was 41.6%, clinical benefit 60.9%. Median progression-free and median overall survival were 6 and 20 months, respectively. Overall, no differences emerged by pertuzumab pretreatment, with median progression-free and median overall survival of 4 and 17 months in pertuzumab-pretreated (p=0.13), and 6 and 22 months in pertuzumab-naïve patients (p=0.27). Patients who received second-line T-DM1 had median progression-free and median overall survival of 3 and 12 months (p=0.0001) if pertuzumab-pretreated, and 8 and 26 months if pertuzumab-naïve (p=0.06). In contrast, in third-line and beyond, median progression-free and median overall survival were 16 and 18 months in pertuzumab-pretreated (p=0.05) and 6 and 17 months in pertuzumab-naïve patients (p=0.30). In multivariate analysis, lower ECOG performance status was associated with progression-free survival benefit (p<0.0001), while overall survival was positively affected by lower ECOG PS (p<0.0001), absence of brain metastases (p 0.05), and clinical benefit (p<0.0001). Our results are comparable with those from randomized trials. Further studies are warranted to confirm and interpret our data on apparently lower T-DM1 efficacy when given as second-line treatment after pertuzumab, and on the optimal sequence order.
Cervical cancer is the third most common cancer worldwide, and the development of new diagnosis, prognostic, and treatment strategies is a major interest for public health. Cisplatin, in combination with external beam irradiation for locally advanced disease, or as monotherapy for recurrent/metastatic disease, has been the cornerstone of treatment for more than two decades. Other investigated cytotoxic therapies include paclitaxel, ifosfamide and topotecan, as single agents or in combination, revealing unsatisfactory results. In recent years, much effort has been made towards evaluating new drugs and developing innovative therapies to treat cervical cancer. Among the most investigated molecular targets are epidermal growth factor receptor and vascular endothelial growth factor (VEGF) signaling pathways, both playing a critical role in cervical cancer development. Studies with bevacizumab or VEGF receptor tyrosine kinase have given encouraging results in terms of clinical efficacy, without adding significant toxicity. A great number of other molecular agents targeting critical pathways in cervical malignant transformation are being evaluated in preclinical and clinical trials, reporting preliminary promising data.In the current review, we discuss novel therapeutic strategies which are being investigated for the treatment of advanced cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.