A b s t r a c tIntroduction: TP53 and MGMT alterations play a crucial role in glioblastoma (GB) pathogenesis. TP53 and MGMT function is affected by several pathologic mechanisms, such as point mutations or promoter methylation, which are well characterized. Expression of both genes can be regulated by other mechanisms as well, e.g., microRNAs (miRNAs). Moreover, cross-talk among various pathologic processes may occur, further affecting MGMT and TP53 functionality. Material and methods: In 49 GB patients, we analyzed the possible associations between TP53 and its miRNA regulators miR-125b, miR-21, and miR34a, as well as MGMT and its miRNA regulators miR-181d and miR-648. We evaluated the possible influence of mutational and methylation status on the pre-identified associations. Results: In patients with immunohistochemistry-detected TP53 overexpression, expression levels of miR-34a and TP53 were negatively correlated (r = -0.56, p = 0.0195), and in patients with TP53 mutations, expression levels of TP53 and miR-21 were negatively correlated (r = -0.67, p = 0.0330). In patients with MGMT methylation, expression levels of MGMT were negatively correlated with miR-648 and miR-125b expression levels (r = -0.61, p = 0.0269 and r = -0.34, p = 0.0727, respectively).Conclusions: Our findings demonstrate that selected miRNAs are significantly correlated with MGMT and TP53 levels, but the extent of this correlation differs regarding the TP53 and MGMT mutational and promoter methylation status.
Glioblastoma cell cultures in vitro are frequently used for investigations on the biology of tumors or new therapeutic approaches. Recent reports have emphasized the importance of cell culture type for maintenance of tumor original features. Nevertheless, the ability of GBM cells to preserve EGFR overdosage in vitro remains controversial. Our experimental approach was based on quantitative analysis of EGFR gene dosage in vitro both at DNA and mRNA level. Real-time PCR data were verified with a FISH method allowing for a distinction between EGFR amplification and polysomy 7. We demonstrated that EGFR amplification accompanied by EGFRwt overexpression was maintained in spheroids, but these phenomena were gradually lost in adherent culture. We noticed a rapid decrease of EGFR overdosage already at the initial stage of cell culture establishment. In contrast to EGFR amplification, the maintenance of polysomy 7 resulted in EGFR locus gain and stabilization even in long-term adherent culture in serum presence. Surprisingly, the EGFRwt expression pattern did not reflect the latter phenomenon and we observed no overexpression of the tested gene. Moreover, quantitative analysis demonstrated that expression of the truncated variant of receptor—EGFRvIII was preserved in GBM-derived spheroids at a level comparable to the initial tumor tissue. Our findings are especially important in the light of research using glioblastoma culture as the experimental model for testing novel EGFR-targeted therapeutics in vitro, with special emphasis on the most common mutated form of receptor—EGFRvIII.
BackgroundRecently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers.MethodsTo this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry.ResultsWe found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations.ConclusionIn terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.