Whereas the anti-inflammatory properties and mechanisms of action of long chain ω3 PUFAs have been abundantly investigated, research gaps remain regarding the respective contribution and mechanisms of action of their oxygenated metabolites collectively known as oxylipins. We conducted a dose-dependent and comparative study in human primary macrophages aiming to compare the anti-inflammatory activity of two types of DHA-derived oxylipins including the well-described protectins (NPD1 and PDX), formed through lipoxygenase pathway and the neuroprostanes (14-A- and 4-F-NeuroP) formed through free-radical mediated oxygenation and expected to be new anti-inflammatory mediators. Considering the potential ability of these DHA-derived oxylipins to bind PPARs and knowing the central role of these transcription factors in the regulation of macrophage inflammatory response, we performed transactivation assays to compare the ability of protectins and neuroprostanes to activate PPARs. All molecules significantly reduced mRNA levels of cytokines such as IL-6 and TNF-α, however not at the same doses. NPD1 showed the most effect at 0.1µM (-14.9%, p<0.05 for IL-6 and -26.7%, p<0.05 for TNF-α) while the three other molecules had greater effects at 10µM, with the strongest result due to the cyclopentenone neuroprostane, 14-A-NeuroP (-49.8%, p<0.001 and -40.8%, p<0.001, respectively). Part of the anti-inflammatory properties of the DHA-derived oxylipins investigated could be linked to their activation of PPARs. Indeed, all tested oxylipins significantly activated PPARγ, with 14-A-NeuroP leading to the strongest activation, and NPD1 and PDX also activated PPARα. In conclusion, our results show that neuroprostanes and more especially cyclopentenone neuroprostanes have potent anti-inflammatory activities similar or even more pronounced than protectins supporting that neuroprostanes should be considered as important contributors to the anti-inflammatory effects of DHA.
Magnesium deficiency in experimental animals leads to inflammation, exacerbated immune stress response and a decrease of specific immune response. It also results in a significant increase in free radical species and subsequent tissue injury. An accelerated thymus involution was observed in Mg-deficient rats in relation to enhanced apoptosis and enhanced susceptibility to oxidative stress. To examine the stress-inducing effects of low Mg status on thymocytes, cDNA arrays were used to evaluate changes in gene expression in weaning rats submitted to Mg deficiency of short duration (2 days). Several genes exhibited changes in their expression caused by Mg deficiency before any perceptible modification in cell integrity and functions. The up-regulated genes included cytochrome c oxidase, glutathione transferase, CuZn superoxide dismutase, genes associated with the stress response (HSP70 and HSP84) and a gene involved in DNA synthesis and repair (GADD45). The down-regulated genes included Na/P cotransporter 1. These findings are consistent with altered cell growth, modifications of ion fluxes and oxidative stress described during Mg deficiency. The observation of induction of genes involved in protection and repair in cells from Mg-deficient animals provides additional evidence of the role of oxidative stress in the pathobiology of this deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.