Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC 50 ¼ 18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID 50 : 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 mM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB 1 receptors): it reversed the decrease in electrically evoked [3 H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective a7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human a7 n-AChRs (K i of 2274 and 1471 nM, respectively). Ex vivo 3 [H]a-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID 50 ¼ 8 mg/kg p.o.). In functional studies performed with human a7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity ¼ 51 and 36%, EC 50 ¼ 4.4 and 0.9 mM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small a-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic a7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 mM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the a7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3-10 mg/kg i.p.) dosedependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse a7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.
Monoacylglycerol lipase (MAGL) represents a primary degradation enzyme of the endogenous cannabinoid (eCB), 2-arachidonoyglycerol (2-AG). This study reports a potent covalent MAGL inhibitor, SAR127303. The compound behaves as a selective and competitive inhibitor of mouse and human MAGL, which potently elevates hippocampal levels of 2-AG in mice. In vivo, SAR127303 produces antinociceptive effects in assays of inflammatory and visceral pain. In addition, the drug alters learning performance in several assays related to episodic, working and spatial memory. Moreover, long term potentiation (LTP) of CA1 synaptic transmission and acetylcholine release in the hippocampus, two hallmarks of memory function, are both decreased by SAR127303. Although inactive in acute seizure tests, repeated administration of SAR127303 delays the acquisition and decreases kindled seizures in mice, indicating that the drug slows down epileptogenesis, a finding deserving further investigation to evaluate the potential of MAGL inhibitors as antiepileptics. However, the observation that 2-AG hydrolysis blockade alters learning and memory performance, suggests that such drugs may have limited value as therapeutic agents.
The characterization of the first selective orally active and brain-penetrant b 3 -adrenoceptor agonist, SR58611A (amibegron), has opened new possibilities for exploring the involvement of this receptor in stress-related disorders. By using a battery of tests measuring a wide range of anxiety-related behaviors in rodents, including the mouse defense test battery, the elevated plus-maze, social interaction, stressinduced hyperthermia, four-plate, and punished drinking tests, we demonstrated for the first time that the stimulation of the b 3 receptor by SR58611A resulted in robust anxiolytic-like effects, with minimal active doses ranging from 0.3 to 10 mg/kg p.o., depending on the procedure. These effects paralleled those obtained with the prototypical benzodiazepine anxiolytic diazepam or chlordiazepoxide.Moreover, when SR58611A was tested in acute or chronic models of depression in rodents, such as the forced-swimming and the chronic mild stress tests, it produced antidepressant-like effects, which were comparable in terms of the magnitude of the effects to those of the antidepressant fluoxetine or imipramine. Supporting these behavioral data, SR58611A modified spontaneous sleep parameters in a manner comparable to that observed with fluoxetine. Importantly, SR58611A was devoid of side effects related to cognition (as shown in the Morris water maze and object recognition tasks), motor activity (in the rotarod), alcohol interaction, or physical dependence. Antagonism studies using pharmacological tools targeting a variety of neurotransmitters involved in anxiety and depression and the use of mice lacking the b 3 adrenoceptor suggested that these effects of SR58611A are mediated by b 3 adrenoceptors. Taken as a whole, these findings indicate that the pharmacological stimulation of b 3 adrenoceptors may represent an innovative approach for the treatment of anxiety and depressive disorders.
SL651498 (6-fluoro-9-methyl-2-phenyl-4-(pyrrolidin-1-yl-carbonyl)-2, 9-dihydro-1H-pyrido [3,4-b]indol-1-one) was identified as a drug development candidate from a research program designed to discover subtype-selective GABA A receptor agonists for the treatment of generalized anxiety disorder and muscle spasms. The drug displays high affinity for rat native GABA A receptors containing á 1 (K i = 6.8 nM) and á 2 (K i = 12.3 nM) subunits, and weaker affinity for á 5 -containing GABA A receptors (K i = 117 nM). Studies on recombinant rat GABA A receptors confirm these findings and indicate intermediate affinity for the á 3 â 2 ã 2 subtype. SL651498 behaves as a full agonist at recombinant rat GABA A receptors containing á 2 and á 3 subunits, and as a partial agonist at recombinant GABA A receptors expressing á 1 and á 5 subunits. SL651498 produced anxiolytic-like and skeletal muscle relaxant effects qualitatively similar to those of benzodiazepines (BZs) [minimal effective dose (MED): 1 to 10 mg/kg, i.p. and 3 to 10 mg/kg, p.o.]. However, unlike these latter drugs, SL651498 induced muscle weakness, ataxia or sedation at doses much higher than those having anxiolytic-like activity (MED: 30 to 100 mg /kg, i.p. or p.o.). Moreover, in contrast to BZs, SL651498 did not produce tolerance to its anticonvulsant activity or physical dependence. It was much less active than BZs in potentiating the depressant effects of ethanol or impairing cognitive processes in rodents. The differential 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.