The present study aims first to compare the antioxidant microconstituent contents between organically and conventionally grown tomatoes and, second, to evaluate whether the consumption of purees made of these tomatoes can differently affect the plasma levels of antioxidant microconstituents in humans. When results were expressed as fresh matter, organic tomatoes had higher vitamin C, carotenoids, and polyphenol contents (except for chlorogenic acid) than conventional tomatoes. When results were expressed as dry matter, no significant difference was found for lycopene and naringenin. In tomato purees, no difference in carotenoid content was found between the two modes of culture, whereas the concentrations of vitamin C and polyphenols remained higher in purees made out of organic tomatoes. For the nutritional intervention, no significant difference (after 3 weeks of consumption of 96 g/day of tomato puree) was found between the two purees with regard to their ability to affect the plasma levels of the two major antioxidants, vitamin C and lycopene.
The objective of this study was to determine the impact of lowering nitrogen supply from 12 to 6 or 4 mM NO(3)(-) on tomato fruit yield and quality during the growing season. Lowering nitrogen supply had a low impact on fruit commercial yield (-7.5%), but it reduced plant vegetative growth and increased fruit dry matter content, improving consequently fruit quality. Fruit quality was improved due to lower acid (10-16%) and increased soluble sugar content (5-17%). The content of some phenolic compounds (rutin, a caffeic acid glycoside, and a caffeic acid derivate) and total ascorbic acid tended to be higher in fruit with the lowest nitrogen supply, but differences were significant in only a few cases (trusses). With regard to carotenoids, data did not show significant and univocal differences related to different levels of nitrogen supply. Thus, reducing nitrogen fertilization limited environmental pollution, on the one hand, and may improve, on the other hand, both growers' profits, by limiting nitrogen inputs, and fruit quality for consumers, by increasing tomato sugars content. It was concluded that primary and secondary metabolites could be affected as a result of a specific response to low nitrogen, combined with a lower degree of vegetative development, increasing fruit irradiance, and therefore modifying fruit composition.
Changes in fruit-source ratio during the growth and maturation of cherry tomato fruits were studied in combination with increased fruit temperature. Six treatments were compared: the presence or absence of local heating combined with different fruit origins (7P, fruit from trusses pruned to seven flowers; 14P, proximal fruits; 14D, distal fruits from trusses pruned to 14 flowers). 7P were less sensitive to heating whereas 14P and 14D showed greater reduction in water and dry matter (DM) content. Distal fruits had the lowest structural DM (sDM), which could be due to a lower fruit cell number. Heating further decreased the sDM, so that fruit sink size was the lowest for distal fruits subjected to heating. Under low competition (7P), heating had a beneficial effect on sugar and lycopene content, whereas acids, β-carotene and vitamin C content were reduced. Under high competition (14P, 14D), heating increased the ratio sDM-DM. This was mainly due to the reduced content of sugars and acids, but also to the reduced accumulation of secondary metabolites such as vitamin C, β-carotene and lycopene. This study underlines the interactions between fruit temperature and the fruit-source ratio and the consequences for fruit composition and nutritional quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.