Aspergillus fumigatus is the most prevalent airborne fungal pathogen responsible for fatal invasive aspergillosis in immunocompromised patients. Upon arrival in the lung alveolus, conidia of A. fumigatus are phagocytosed by alveolar macrophages, the major phagocytic cells of the lung. Engulfment and intracellular trafficking of A. fumigatus conidia in alveolar macrophages of two different origins, the murine cell line MH-S and human pulmonary alveolar macrophages, were analyzed by electron microscopy and immunofluorescence. Phagocytosis of A. fumigatus conidia required actin polymerization and phosphatidylinositol 3-kinase activity. Fusion of A. fumigatus phagosomes with early and late endosomes was shown by immunolabeling with specific markers for the transferrin receptor, early endosome antigen, and Rab7. Maturation of A. fumigatus phagolysosomes was monitored by using a fixable acidotropic probe, LysoTracker Red DND-99, and an anti-cathepsin D antibody. Bafilomycin A-induced inhibition of lysosomal acidification abolished the conidial killing by the macrophages. These data suggest that the maturation of A. fumigatus phagosomes results from fusion with the compartments of the endocytic pathway and that the killing of conidia depends on phagolysosome acidification. A model for the phagocytosis of A. fumigatus conidia by alveolar macrophages is proposed on the basis of these results.
Clinical studies with modulators of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein have demonstrated that functional restoration of the mutated CFTR can lead to substantial clinical benefit. However, studies have shown highly variable patient responses. The objective of this study was to determine a biomarker predictive of the clinical response. CFTR function was assessed in vivo via nasal potential difference (NPD) and in human nasal epithelial (HNE) cultures by the response to Forskolin/IBMX and the CFTR potentiator VX-770 in short-circuit-current (∆IscF/I+V) experiments. CFTR expression was evaluated by apical membrane fluorescence semi-quantification. Isc measurements discriminated CFTR function between controls, healthy heterozygotes, patients homozygous for the severe F508del mutation and patients with genotypes leading to absent or residual function. ∆IscF/I+V correlated with CFTR cellular apical expression and NPD measurements. The CFTR correctors lumacaftor and tezacaftor significantly increased the ∆IscF/I+V response to about 25% (SEM = 4.4) of the WT-CFTR level and the CFTR apical expression to about 22% (SEM = 4.6) of the WT-CFTR level in F508del/F508del HNE cells. The level of CFTR correction in HNE cultures significantly correlated with the FEV1 change at 6 months in 8 patients treated with CFTR modulators. We provide the first evidence that correction of CFTR function in HNE cell cultures can predict respiratory improvement by CFTR modulators.
In the context of lung transplant (LT), because of diagnostic difficulties, antibody-mediated rejection (AMR) remains a matter of debate. We retrospectively analyzed an LT cohort at Foch Hospital to demonstrate the impact of AMR on LT prognosis. AMR diagnosis requires association of clinical symptoms, donor-specific antibodies (DSAs), and C4d
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.