While stressful life events are an important cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The molecular mechanisms underlying such resilience are poorly understood. Here, we demonstrate that an inbred population of mice subjected to social defeat can be separated into susceptible and unsusceptible subpopulations that differ along several behavioral and physiological domains. By a combination of molecular and electrophysiological techniques, we identify signature adaptations within the mesolimbic dopamine circuit that are uniquely associated with vulnerability or insusceptibility. We show that molecular recapitulations of three prototypical adaptations associated with the unsusceptible phenotype are each sufficient to promote resistant behavior. Our results validate a multidisciplinary approach to examine the neurobiological mechanisms of variations in stress resistance, and illustrate the importance of plasticity within the brain's reward circuits in actively maintaining an emotional homeostasis.
Although there are clear interactions between circadian rhythms and drug addiction, mechanisms for such interactions remain unknown. Here we establish a role for the Clock gene in regulating the brain's reward circuit. Mice lacking a functional Clock gene display an increase in cocaine reward and in the excitability of dopamine neurons in the midbrain ventral tegmental area, a key brain reward region. These phenotypes are associated with increased expression and phosphorylation of tyrosine hydroxylase (the rate-limiting enzyme in dopamine synthesis), as well as changes in several genes known to regulate dopamine activity in the ventral tegmental area. These findings demonstrate the involvement of a circadian-associated gene, Clock, in regulating dopamine function and cocaine reward.circadian rhythms ͉ dopamine ͉ drug addiction ͉ tyrosine hydroxylase D rug addiction is associated with disruptions in sleep and circadian rhythmicity (1-3). Moreover, in animal models of addiction, several reward-related behaviors exhibit clear circadian regulation. For example, levels of drug self administration and drug-induced locomotor sensitization vary according to the day͞night cycle (4-6). These observations suggest interactions between the brain's circadian and reward systems.Although many of the genes involved in circadian rhythms are expressed outside the suprachiasmatic nucleus (SCN), the brain's master circadian pacemaker, and are found in limbic regions of the brain, little is known about their function in these other brain regions. The first indication that circadian-associated genes may be involved in drug-related behaviors came from studies in Drosophila, which showed that behavioral sensitization to cocaine depended on expression of Period, Clock, Cycle, and Doubletime (7). More recently, it was reported that locomotor sensitization and conditioned preference for cocaine are abnormal in mice lacking the Period-1 (mPer1) or Period-2 (mPer2) gene (6). These genes are induced as well by cocaine in the dorsal striatum and nucleus accumbens, brain regions important for cocaine's behavioral effects (8, 9). Although these findings support a role for circadian-associated genes in behavioral responses to drugs of abuse, little is known about the mechanisms by which these genes function, or are regulated, within the brain's reward and motor circuits.Cocaine and other drugs of abuse produce their behavioral effects in part by modulating dopamine neurotransmission in the midbrain ventral tegmental area (VTA), a key component of the brain's reward circuit (10). Several interactions between dopamine and circadian function have been reported. For example, dopamine neurons in the retina regulate adaptations to light (11). Moreover, dopamine D1 receptors in the prenatal SCN are necessary for synchronizing the master circadian clock during development (12). However, a direct link between circadian genes and the VTA dopamine reward system has not been described. CLOCK is a member of the basic helix-loop-helix-PAS (PER-ARNT-SIM) transc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.