Strategies are needed for human immunodeficiency virus type 1 vaccine development that improves the neutralizing antibody response against primary isolates of the virus. Here we examined recombinant DNA priming followed by subunit protein boosting as a strategy to generate neutralizing antibodies. Both plasmidbased and recombinant protein envelope (Env) glycoprotein immunogens were derived from a primary viral isolate, JR-FL. Serum from rabbits immunized with either gp120 or gp140 DNA vaccines delivered by gene gun inoculation followed by recombinant gp120 protein boosting was capable of neutralizing JR-FL. Neither the DNA vaccines alone nor the gp120 protein alone generated a detectable neutralizing antibody response against this virus. Neutralizing antibody responses using gp120 DNA and gp140 DNA for priming were similar. The results suggest that Env DNA priming followed by gp120 protein boosting provides an advantage over either approach alone for generating a detectable neutralizing antibody response against primary isolates that are not easily neutralized.Neutralizing antibodies are considered critical immune components for effective vaccination against human immunodeficiency virus type 1 (HIV-1) infection and disease (5,10,16,19). The HIV-1 envelope glycoproteins (Env) are the primary viral antigens targeted by neutralizing antibodies. However, efforts to develop an Env-based immunogen that elicits an effective neutralizing antibody response are hampered by the high mutation rate of the virus in infected individuals (23) and the resulting genetic heterogeneity and structural complexity exhibited by Env (24). Thus, an effective HIV-1 vaccine will need to target a plethora of genetic and antigenic variants of the virus.A variety of candidate HIV-1 vaccines have included Env for the purpose of generating a neutralizing antibody response (8,14,20). Among these, DNA vaccines have proven to be poor inducers of neutralizing antibodies on their own but nonetheless prime for a detectable neutralizing antibody response after Env protein boosting (1,9,11,13,21,22). Unfortunately, the neutralizing antibodies generated in these studies have primarily targeted T-cell-line-adapted strains and a small fraction of primary isolates of HIV-1 that are unusually sensitive to neutralization. Most primary isolates of HIV-1 are substantially less sensitive to neutralization and more difficult to target with vaccines (2-4, 15).It has not been clear whether the DNA prime and protein boost strategy affords an advantage over Env protein immunization alone with respect to the elicitation of a neutralizing antibody response that targets typical primary HIV-1 isolates that are not easily neutralized. In this regard, the JR-FL strain of HIV-1 exhibits such a neutralization phenotype (6) and therefore represents a relevant viral target upon which different vaccine strategies can be evaluated and compared. In the present study, we investigated the ability of the JR-FL gp120 protein to generate a neutralizing antibody response with and with...
The linear peptide 12p1 (RINNIPWSEAMM) was previously isolated from a phage display library and was found to inhibit interaction of HIV-1 gp120 with both CD4 and a CCR5 surrogate, mAb 17b [Ferrer, M., and Harrison, S. (1999) J. Virol. 73, 5795-5802]. In this work, we investigated the mechanism that leads to this dual inhibition of gp120 binding. We found that there is a direct interaction of 12p1 with gp120, which occurs with a binding stoichiometry of 1:1. The peptide inhibits binding of monomeric YU2 gp120 to both sCD4 and 17b at IC(50) values of 1.1 and 1.6 microM, respectively. The 12p1 peptide also inhibited the binding of these ligands to trimeric envelope glycoproteins, blocked the binding of gp120 to the native coreceptor CCR5, and specifically inhibited HIV-1 infection of target cells in vitro. Analyses of sCD4 saturation of monomeric gp120 in the presence or absence of a fixed concentration of peptide suggest that 12p1 suppression of CD4 binding to gp120 is due to allosteric inhibitory effects rather than competitive inhibition of CD4 binding. Using a panel of gp120 mutants that exhibit weakened inhibition by 12p1, the putative binding site of the peptide was mapped to a region immediately adjacent to, but distinguishable from, the CD4 binding footprint. In the case of the peptide, the effects of single-12p1 residue substitutions and various peptide truncations indicate that the side chain of Trp7 and other structural elements of 12p1 are critical for gp120 binding or efficient inhibition of binding of a ligand to gp120. Finally, 12p1 was unable to inhibit binding of sCD4 to a gp120 mutant that is believed to resemble the CD4-induced conformation of gp120. These results suggest that 12p1 preferentially binds gp120 prior to engagement of CD4; binding of the peptide to gp120 limits the interaction with ligands (CD4 and CCR5) that are generally crucial for viral entry. More importantly, these results indicate that 12p1 binds to a unique site that may prove to be a prototypic target for novel CD4-gp120 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.