Recovery plans for endangered southern resident killer whales Orcinus orca have identified reduced prey availability as a risk to the population. In order to better assess this risk, we studied prey selection from 2004 to 2008 in 2 regions of the whales' summer range: San Juan Islands, Washington and the western Strait of Juan de Fuca, British Columbia. Following the whales in a small boat, we collected fish scales and tissue remains from predation events, and feces, using a fine mesh net. Visual fish scale analysis and molecular genetic methods were used to identify the species consumed. Chinook salmon, a relatively rare species, was by far the most frequent prey item, confirming previous studies. For Chinook salmon prey, we used genetic identification methods to estimate the spawning region of origin. Of the Chinook salmon sampled, 80 to 90% were inferred to have originated from the Fraser River, and only 6 to 14% were inferred to have originated from Puget Sound area rivers. Within the Fraser River, the Upper Fraser, Middle Fraser, South Thompson River and Lower Fraser stocks were inferred to currently be sequentially important sources of Chinook salmon prey through the summer. This information will be of significant value in guiding management actions to recover the southern resident killer whale population.
A thorough reconstruction of historical processes is essential for a comprehensive understanding of the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded recently, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored.
Juvenile salmon transitioning from freshwater to marine environments experience high variation in growth and survival, yet the specific causes of this variation are poorly understood. Size at and timing of ocean entry may contribute to this variation because they influence both the availability of prey and vulnerability to predators. To Subject editor: Carl Walters, University of British Columbia, Canada This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. *Corresponding author: laurie.weitkamp@noaa.gov Received January 16, 2015; accepted April 28, 2015 370 Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 7:370-392, 2015 Published with license by American Fisheries Society ISSN: 1942-5120 online DOI: 10.1080/19425120.2015 explore this issue, we used stock assignments based on genetic stock identification and internal tags to document the stock-specific size and timing of juvenile hatchery and presumed wild Columbia River Chinook Salmon Oncorhynchus tshawytscha and steelhead O. mykiss at ocean entry during 2007-2011. We found that juvenile salmon and steelhead had consistent stock-specific capture dates, with lower-river stocks typically having earlier timing than those originating farther upstream. Mean size also varied among stocks and was related to hatchery practices. Hatchery yearling Chinook Salmon and steelhead were consistently larger than wild fish from the same stocks, although timing in the estuary was similar. In contrast, hatchery subyearling Chinook Salmon were of similar size to wild fish but entered the ocean up to a month earlier. We evaluated the potential importance of these traits on early marine growth by estimating stock-specific growth rates for Chinook Salmon caught in estuarine and ocean habitats. Growth rates were related to relative ocean entry timing, with lower growth rates for stocks that had only recently arrived in marine waters. Our results demonstrate that stocks within a single basin can differ in their size and timing of ocean entry, life history traits that contribute to early marine growth and potentially to the survival of juvenile salmon. Our results also highlight the necessity of considering stock-specific variation in life history traits to understand salmon ecology and survival across the entire life cycle.The movement of juvenile salmon from freshwater to marine habitats is a poorly understood but critical transition (Pearcy 1992;Pearcy and McKinnell 2007). During this transition, fish must not only physiologically adapt to salt water, but also contend with entirely new prey, predators, and habitats (Spence and Hall 2010). The size at and timing of ocean entry have been identified as important factors during this period. Minor variation in timing can have...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.