Prenylated flavonoids found in hops and beer, i.e., prenylchalcones and prenylflavanones, were examined for their ability to inhibit in vitro oxidation of human low-density lipoprotein (LDL). The oxidation of LDL was assessed by the formation of conjugated dienes and thiobarbituric acid-reactive substances (TBARS) and the loss of tryptophan fluorescence. At concentrations of 5 and 25 microM, all of the prenylchalcones tested inhibited the oxidation of LDL (50 microg protein/ml) induced by 2 microM copper sulfate. The prenylflavanones showed less antioxidant activity than the prenylchalcones, both at 5 and 25 microM. At 25 microM, the nonprenylated chalcone, chalconaringenin (CN), and the nonprenylated flavanone, naringenin (NG), exerted prooxidant effects on LDL oxidation, based on TBARS formation. Xanthohumol (XN), the major prenylchalcone in hops and beer, showed high antioxidant activity in inhibiting LDL oxidation, higher than alpha-tocopherol and the isoflavone genistein but lower than the flavonol quercetin. When combined, XN and alpha-tocopherol completely inhibited copper-mediated LDL oxidation. These findings suggest that prenylchalcones and prenylflavanones found in hops and beer protect human LDL from oxidation and that prenylation antagonizes the prooxidant effects of the chalcone, CN, and the flavanone, NG.
The zebrafish (Danio rerio) has been long advocated as a model for cancer research, but little is known about the real molecular similarities between zebrafish and human tumors. Comparative analysis of microarray data from zebrafish liver tumors with those from four human tumor types revealed molecular conservation at various levels between fish and human tumors. This approach provides a useful strategy for identifying an expression signature that is strongly associated with a disease phenotype.
Xanthohumol (XN), the principal flavonoid of the hop plant (Humulus lupulus L.) and a constituent of beer, has been suggested to have potential cancer chemopreventive activities. We have observed that most cancer chemopreventive agents show antiangiogenic properties in vitro and in vivo, a concept we termed "angioprevention." Here we show for the first time that XN can inhibit growth of a vascular tumor in vivo. Histopathology and in vivo angiogenesis assays indicated that tumor angiogenesis inhibition was involved. Further, we show the mechanisms for its inhibition of angiogenesis in vivo and related endothelial cell activities in vitro. XN repressed both the NF-kappaB and Akt pathways in endothelial cells, indicating that components of these pathways are major targets in the molecular mechanism of XN. Moreover, using in vitro analyses, we show that XN interferes with several points in the angiogenic process, including inhibition of endothelial cell invasion and migration, growth, and formation of a network of tubular-like structures. Our results suggest that XN can be added to the expanding list of antiangiogenic chemopreventive drugs whose potential in cancer prevention and therapy should be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.