Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality of service (QoS) requirements. In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques and existing applications. Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations, and review the communication protocols specially designed for RF-EHNs. We also explore various key design issues in the development of RF-EHNs according to the network types, i.e., single-hop networks, multi-antenna networks, relay networks, and cognitive radio networks. Finally, we envision some open research directions.Index Terms-RF energy harvesting, simultaneous wireless information and power transfer (SWIPT), receiver operation policy, beamforming, communication protocols, RF-powered Cognitive radio network.1553-877X (c) 2 transmission. Traditionally, free-space beaming and antennas with large apertures are used to overcome propagation loss for large power transfer. For example, in 1960's, the authors in [15] demonstrate a small helicopter hovering at a height of 50 feet, powered by an RF source with a DC power supply of 270W operating on 2.45GHz on the ground. In [16], the authors demonstrate a space-to-earth power transfer system using gigantic transmit antenna arrays at a satellite and receive antenna arrays at a ground station. For transmit power of 2.7GW, the power transfer efficiency is estimated to be 45% over a transfer distance of 36000km. During the past decade, with the development in RF energy harvesting circuit, low power transfer for powering mobile terminals in wireless communication systems began to attract increasing attention [17], [18]. The authors in [17] propose a network architecture for RF charging stations, overlaying with an uplink cellular network. In [18], a harvest-then-transmit protocol is introduced for power transfer in wireless broadcast system. Moreover, various modern beamforming techniques are employed to improve power transfer efficiency [18]-[20] for mobile applications.It is until recently that the dual use of RF signals for delivering energy as well as for transporting information has been advocated [21], [22]. Simultaneous wireless information and power transfer (SWIPT) [23] is proposed for delivering RF energy, usually in a low power region (e.g., for sensor networks). SWIPT provides the advantage of delivering controllable and efficient on-demand wireless information and energy concurrently, which offers a low-cost option for sustainable operations of wireless systems without hardware modification on the ...
This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.
The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and datadriven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this survey, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of incentivized consensus in blockchain networks, our in-depth review of the state-ofthe-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review on the strategy adoption for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey on the emerging applications of the blockchain networks in a wide range of areas. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions.
Abstract-Wireless charging is a technology of transmitting power through an air gap to electrical devices for the purpose of energy replenishment. The recent progress in wireless charging techniques and development of commercial products have provided a promising alternative way to address the energy bottleneck of conventionally portable battery-powered devices. However, the incorporation of wireless charging into the existing wireless communication systems also brings along a series of challenging issues with regard to implementation, scheduling, and power management. In this article, we present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications. In particular, with regard to network applications, we review the static charger scheduling strategies, mobile charger dispatch strategies and wireless charger deployment strategies. Additionally, we discuss open issues and challenges in implementing wireless charging technologies. Finally, we envision some practical future network applications of wireless charging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.