In recent years, stress analysis by using electro-encephalography (EEG) signals incorporating machine learning techniques has emerged as an important area of research. EEG signals are one of the most important means of indirectly measuring the state of the brain. The existing stress algorithms lack efficient feature selection techniques to improve the performance of a subsequent classifier. In this paper, genetic algorithm (GA)-based feature selection and k-nearest neighbor (k-NN) classifier are used to identify stress in human beings by analyzing electro-encephalography (EEG) signals. GA is incorporated in the stress analysis pipeline to effectively select subset of features that are suitable to enhance the performance of the k-NN classifier. The performance of the proposed method is evaluated using the Database for Emotion Analysis using Physiological Signals (DEAP), which is a public EEG dataset. A feature set is extracted in 32 EEG channels, which consists of statistical features, Hjorth parameters, band power, and frontal alpha asymmetry. The selected features through GA are used as input to the k-NN classifier to distinguish whether each EEG datapoint represents a stress state. To further consolidate, the effectiveness of the proposed method is compared with that of a state-of-the-art principle component analysis (PCA) method. Experimental results show that the proposed GA-based method outperforms PCA, with GA demonstrating 71.76% classification accuracy compared with 65.3% for PCA. Thus, it can be concluded that the proposed method can be effectively used for stress analysis with high classification accuracy.
Abstract. Augmented accuracy in prediction of diabetes will open up new frontiers in health prognostics. Data overfitting is a performance-degrading issue in diabetes prognosis. In this study, a prediction system for the disease of diabetes is presented where the issue of overfitting is minimized by using the dropout method. Deep learning neural network is used where both fully connected layers are followed by dropout layers. The output performance of the proposed neural network is shown to have outperformed other state-of-art methods and it is recorded as by far the best performance for the Pima Indians Diabetes Data Set.
Estimation of the remaining useful life (RUL) of bearings is important to avoid abrupt shutdowns in rotary machines. An important task in RUL estimation is the construction of a suitable health indicator (HI) to infer the bearing condition. Conventional health indicators rely on features of the vibration acceleration signal and are predominantly calculated without considering its non-stationary nature. This often results in an HI with a trend that is difficult to model, as well as random fluctuations and poor correlation with bearing degradation. Therefore, this paper presents a method for constructing a bearing’s HI by considering the non-stationarity of the vibration acceleration signals. The proposed method employs the discrete wavelet packet transform (DWPT) to decompose the raw signal into different sub-bands. The HI is extracted from each sub-band signal, smoothened using locally weighted regression, and evaluated using a gradient-based method. The HIs showing the best trends among all the sub-bands are iteratively accumulated to construct an HI with the best trend over the entire life of the bearing. The proposed method is tested on two benchmark bearing datasets. The results show that the proposed method yields an HI that correlates well with bearing degradation and is relatively easy to model.
Digital watermarking is a process of giving security from unauthorized use. To protect the data from any kind of misuse while transferring, digital watermarking is the most popular authentication technique. This paper proposes a novel digital watermarking scheme for biomedical images. In the model, initially, the biomedical image is preprocessed using improved successive mean quantization transform (SMQT) which uses the Otsu's threshold value. In the next phase, the image is segmented using Otsu and Fuzzy c-means. Afterwards, the watermark is embedded in the image using discrete wavelet transform (DWT) and inverse DWT (IDWT). Finally, the watermark is extracted from the biomedical image by executing the inverse operation of the embedding process. Experimental results exhibit that the proposed digital watermarking scheme outperforms the typical models in terms of effectiveness and imperceptibility while maintaining robustness against different attacks by demonstrating a lower bit error rate (BER), a cross-correlation value closer to one, and higher values of structural similarity index measures (SSIM) and peak signal-to-noise ratio (PSNR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.