We report in this paper on the study of surface acoustic wave (SAW) resonators based on an AlN/titanium alloy (TC4) structure. The AlN/TC4 structure with different thicknesses of AlN films was simulated, and the acoustic propagating modes were discussed. Based on the simulation results, interdigital transducers with a periodic length of 24 μm were patterned by lift-off photolithography techniques on the AlN films/TC4 structure, while the AlN film thickness was in the range 1.5–3.5 μm. The device performances in terms of quality factor (Q-factor) and electromechanical coupling coefficient (k2) were determined from the measure S11 parameters. The Q-factor and k2 were strongly dependent not only on the normalized AlN film thickness but also on the full-width at half-maximum (FWHM) of AlN (002) peak. The dispersion curve of the SAW phase velocity was analyzed, and the experimental results showed a good agreement with simulations. The temperature behaviors of the devices were also presented and discussed. The prepared SAW resonators based on AlN/TC4 structure have potential applications in integrated micromechanical sensing systems.
Flexible strain sensors have a wide range of applications in biomedical science, aerospace industry, portable devices, precise manufacturing, etc. However, the manufacturing processes of most flexible strain sensors previously reported have usually required high manufacturing costs and harsh experimental conditions. Besides, research interests are often focused on improving a single attribute parameter while ignoring others. This work aims to propose a simple method of manufacturing flexible graphene-based strain sensors with high sensitivity and fast response. Firstly, oxygen plasma treats the substrate to improve the interfacial interaction between graphene and the substrate, thereby improving device performance. The graphene solution is then sprayed using a soft PET mask to define a pattern for making the sensitive layer. This flexible strain sensor exhibits high sensitivity (gauge factor ~100 at 1% strain), fast response (response time: 400–700 μs), good stability (1000 cycles), and low overshoot (<5%) as well. Those processes used are compatible with a variety of complexly curved substrates and is expected to broaden the application of flexible strain sensors.
High temperature characteristics of langasite surface acoustic wave (SAW) devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN coating layer can protect and improve the performance of the SAW devices at high temperature. The SAW velocity increases with increasing AlN coating layer thickness. The temperature coefficients of frequency (TCF) of the prepared SAW devices decrease with increasing thickness of AlN coating layers, while the electromechanical coupling coefficient (K2) of the SAW devices increases with increasing AlN film thickness. The K2 of the SAW devices increases by about 20% from room temperature to 600 °C. The results suggest that AlN coating layer can not only protect the SAW devices from environmental contamination, but also improve the K2 of the SAW devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.