Warming and Melting
Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed.
Joughin
et al.
(p.
1172
) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change.
Shepherd
et al.
(p.
1183
) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise.
[1] We present our best estimate of the thickness and volume of the Arctic Ocean ice cover from 10 Ice, Cloud, and land Elevation Satellite (ICESat) campaigns that span a 5-year period between 2003 and 2008. Derived ice drafts are consistently within 0.5 m of those from a submarine cruise in mid-November of 2005 and 4 years of ice draft profiles from moorings in the Chukchi and Beaufort seas. Along with a more than 42% decrease in multiyear (MY) ice coverage since 2005, there was a remarkable thinning of $0.6 m in MY ice thickness over 4 years. In contrast, the average thickness of the seasonal ice in midwinter ($2 m), which covered more than two-thirds of the Arctic Ocean in 2007, exhibited a negligible trend. Average winter sea ice volume over the period, weighted by a loss of $3000 km 3 between 2007 and 2008, was $14,000 km 3 . The total MY ice volume in the winter has experienced a net loss of 6300 km 3 (>40%) in the 4 years since 2005, while the first-year ice cover gained volume owing to increased overall area coverage. The overall decline in volume and thickness are explained almost entirely by changes in the MY ice cover. Combined with a large decline in MY ice coverage over this short record, there is a reversal in the volumetric and areal contributions of the two ice types to the total volume and area of the Arctic Ocean ice cover. Seasonal ice, having surpassed that of MY ice in winter area coverage and volume, became the dominant ice type. It seems that the near-zero replenishment of the MY ice cover after the summers of 2005 and 2007, an imbalance in the cycle of replenishment and ice export, has played a significant role in the loss of Arctic sea ice volume over the ICESat record.
[1] Satellite-derived estimates of sea-ice age and thickness are combined to produce a proxy ice thickness record for 1982 to the present. These data show that in addition to the well-documented loss of perennial ice cover as a whole, the amount of oldest and thickest ice within the remaining multiyear ice pack has declined significantly. The oldest ice types have essentially disappeared, and 58% of the multiyear ice now consists of relatively young 2-and 3-year-old ice compared to 35% in the mid-1980s. Ice coverage in summer 2007 reached a record minimum, with ice extent declining by 42% compared to conditions in the 1980s. The much-reduced extent of the oldest and thickest ice, in combination with other factors such as ice transport that assist the ice-albedo feedback by exposing more open water, help explain this large and abrupt ice loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.